We propose a new framework for processing Fringe Patterns (FP). Our novel approach builds upon the hypothesis that the denoising and normalisation of FPs can be learned by a deep neural network if enough pairs of corrupted and cleaned FPs are provided. Although similar proposals have been reported in the literature, we propose an improvement of a well-known deep neural network architecture, which produces high-quality results in terms of stability and repeatability. We test the performance of our method in various scenarios: FPs corrupted with different degrees of noise, and corrupted with different noise distributions. We compare our methodology versus other state-of-the-art methods. The experimental results (on both synthetic and real data) demonstrate the capabilities and potential of this new paradigm for processing interferograms. We expect our work would motivate more sophisticated developments in this direction.
We present the Simplified Lissajous Ellipse Fitting (SLEF) method for the calculation of the random phase step and the phase distribution from two phase-shifted interferograms. We consider interferograms with spatial and temporal dependency of background intensities, amplitude modulations and noise. Given these problems, the use of the Gabor Filters Bank (GFB) allows us to filter-out the noise, normalize the amplitude and eliminate the background. The normalized patterns permit to implement the SLEF algorithm, which is based on reducing the number of estimated coefficients of the ellipse equation, from five terms to only two. Our method consists of three stages. First, we preprocess the interferograms with GFB methodology in order to normalize the fringe patterns. Second, we calculate the phase step by using the proposed SLEF technique and third, we estimate the phase distribution using a two-steps formula. For the calculation of the phase step, we present two alternatives: the use of the Least Squares (LS) method to approximate the values of the coefficients and, in order to improve the LS estimation, a robust estimation based on the Leclerc's potential. The SLEF method's performance is evaluated through synthetic and experimental data to demonstrate its feasibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.