Recent neural models of dialogue generation offer great promise for generating responses for conversational agents, but tend to be shortsighted, predicting utterances one at a time while ignoring their influence on future outcomes. Modeling the future direction of a dialogue is crucial to generating coherent, interesting dialogues, a need which led traditional NLP models of dialogue to draw on reinforcement learning. In this paper, we show how to integrate these goals, applying deep reinforcement learning to model future reward in chatbot dialogue. The model simulates dialogues between two virtual agents, using policy gradient methods to reward sequences that display three useful conversational properties: informativity, coherence, and ease of answering (related to forward-looking function). We evaluate our model on diversity, length as well as with human judges, showing that the proposed algorithm generates more interactive responses and manages to foster a more sustained conversation in dialogue simulation. This work marks a first step towards learning a neural conversational model based on the long-term success of dialogues.
This paper describes the system we submitted to SemEval-2017 Task 4 (Sen-timent Analysis in Twitter), specifically subtasks A, B, and D. Our main focus was topic-based message polarity classification on a two-point scale (subtask B). The system we submitted uses a Support Vector Machine classifier with rich set of features, ranging from standard to more creative, task-specific features, including a series of rating-based features as well as features that account for sentimental reminiscence of past topics and deceased famous people. Our system ranked 14th out of 39 submissions in subtask A, 5th out of 24 submissions in subtask B, and 3rd out of 16 submissions in subtask D.
In this paper, drawing intuition from the Turing test, we propose using adversarial training for open-domain dialogue generation: the system is trained to produce sequences that are indistinguishable from human-generated dialogue utterances. We cast the task as a reinforcement learning (RL) problem where we jointly train two systems, a generative model to produce response sequences, and a discriminator-analagous to the human evaluator in the Turing test-to distinguish between the human-generated dialogues and the machine-generated ones. The outputs from the discriminator are then used as rewards for the generative model, pushing the system to generate dialogues that mostly resemble human dialogues.In addition to adversarial training we describe a model for adversarial evaluation that uses success in fooling an adversary as a dialogue evaluation metric, while avoiding a number of potential pitfalls. Experimental results on several metrics, including adversarial evaluation, demonstrate that the adversarially-trained system generates higher-quality responses than previous baselines.
Tweets are the most up-to-date and inclusive stream of information and commentary on current events, but they are also fragmented and noisy, motivating the need for systems that can extract, aggregate and categorize important events. Previous work on extracting structured representations of events has focused largely on newswire text; Twitter's unique characteristics present new challenges and opportunities for open-domain event extraction. This paper describes TwiCalthe first open-domain event-extraction and categorization system for Twitter. We demonstrate that accurately extracting an open-domain calendar of significant events from Twitter is indeed feasible. In addition, we present a novel approach for discovering important event categories and classifying extracted events based on latent variable models. By leveraging large volumes of unlabeled data, our approach achieves a 14% increase in maximum F1 over a supervised baseline. A continuously updating demonstration of our system can be viewed at http://statuscalendar.com; Our NLP tools are available at http://github.com/aritter/ twitter_nlp.
Whereas people learn many different types of knowledge from diverse experiences over many years, and become better learners over time, most current machine learning systems are much more narrow, learning just a single function or data model based on statistical analysis of a single data set. We suggest that people learn better than computers precisely because of this difference, and we suggest a key direction for machine learning research is to develop software architectures that enable intelligent agents to also learn many types of knowledge, continuously over many years, and to become better learners over time. In this paper we define more precisely this never-ending learning paradigm for machine learning, and we present one case study: the Never-Ending Language Learner (NELL), which achieves a number of the desired properties of a never-ending learner. NELL has been learning to read the Web 24hrs/ day since January 2010, and so far has acquired a knowledge base with 120mn diverse, confidence-weighted beliefs (e.g., servedWith(tea,biscuits)), while learning thousands of interrelated functions that continually improve its reading competence over time. NELL has also learned to reason over its knowledge base to infer new beliefs it has not yet read from those it has, and NELL is inventing new relational predicates to extend the ontology it uses to represent beliefs. We describe the design of NELL, experimental results illustrating its behavior, and discuss both its successes and shortcomings as a case study in never-ending learning. NELL can be tracked online at http://rtw.ml.cmu.edu, and followed on Twitter at @CMUNELL. 2. RELATED WORK Previous research has considered the problem of designing machine learning agents that persist over long periods research highlights
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.