Abstract. Volcanic eruptions are an important natural cause of climate change on many timescales. A new capability to predict the climatic response to a large tropical eruption for the succeeding 2 years will prove valuable to society. In addition, to detect and attribute anthropogenic influences on climate, including effects of greenhouse gases, aerosols, and ozone-depleting chemicals, it is crucial to quantify the natural fluctuations so as to separate them from anthropogenic fluctuations in the climate record. Studying the responses of climate to volcanic eruptions also helps us to better understand important radiative and dynamical processes that respond in the climate system to both natural and anthropogenic forcings. Furthermore, modeling the effects of volcanic eruptions helps us to improve climate models that are needed to study anthropogenic effects. Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about 1 year. Large ash particles fall out much quicker. The radiative and chemical effects of this aerosol cloud produce responses in the climate system. By scattering some solar radiation back to space, the aerosols cool the surface, but by absorbing both solar and terrestrial radiation, the aerosol layer heats the stratosphere. For a tropical eruption this heating is larger in the tropics than in the high latitudes, producing an enhanced pole-to-equator temperature gradient, especially in winter. In the Northern Hemisphere winter this enhanced gradient produces a stronger polar vortex, and this stronger jet stream produces a characteristic stationary wave pattern of tropospheric circulation, resulting in winter warming of Northern Hemisphere continents. This indirect advective effect on temperature is stronger than the radiative cooling effect that dominates at lower latitudes and in the summer. The volcanic aerosols also serve as surfaces for heterogeneous chemical reactions that destroy stratospheric ozone, which lowers ultraviolet absorption and reduces the radiative heating in the lower stratosphere, but the net effect is still heating. Because this chemical effect depends on the presence of anthropogenic chlorine, it has only become important in recent decades. For a few days after an eruption the amplitude of the diurnal cycle of surface air temperature is reduced under the cloud. On a much longer timescale, volcanic effects played a large role in interdecadal climate change of the Little Ice Age. There is no perfect index of past volcanism, but more ice cores from Greenland and Antarctica will improve the record. There is no evidence that volcanic eruptions produce E1Nifio events, but the climatic effects of E1 Nifio and volcanic eruptions must be separated to understand the climatic response to each.
[1] Results are presented from the multi-institution partnership to develop a real-time and retrospective North American Land Data Assimilation System (NLDAS). NLDAS consists of (1) four land models executing in parallel in uncoupled mode, (2) common hourly surface forcing, and (3) common streamflow routing: all using a 1/8°grid over the continental United States. The initiative is largely sponsored by the Global Energy and Water Cycle Experiment (GEWEX) Continental-Scale International Project (GCIP). As the overview for nine NLDAS papers, this paper describes and evaluates the 3-year NLDAS execution of 1 October 1996 to 30 September 1999, a period rich in observations for validation. The validation emphasizes (1) the land states, fluxes, and input forcing of four land models, (2) the application of new GCIP-sponsored products, and (3) a multiscale approach. The validation includes (1) mesoscale observing networks of land surface forcing, fluxes, and states, (2) regional snowpack measurements, (3) daily streamflow measurements, and (4) satellite-based retrievals of snow cover, land surface skin temperature (LST), and surface insolation. The results show substantial intermodel differences in surface evaporation and runoff (especially over nonsparse vegetation), soil moisture storage, snowpack, and LST. Owing to surprisingly large intermodel differences in aerodynamic conductance, intermodel differences in midday summer LST were unlike those expected from the intermodel differences in Bowen ratio. Last, anticipating future assimilation of LST, an NLDAS effort unique to this overview paper assesses geostationary-satellite-derived LST, determines the latter to be of good quality, and applies the latter to validate modeled LST.
This dissertation has investigated one of the most important natural causes of climate change, volcanic eruptions, by developing an ice core-based volcanic forcing index, using 54 ice core records from both the Arctic and Antarctica. The extensive collection of ice core data reduces errors inherent in reconstructions based on a single or small number of cores. This enables us to obtain much higher accuracy in both detection of events and quantification of the radiative effects. We extracted volcanic deposition signals from each ice core record by applying a high-pass loess filter to the time series and examining peaks that exceed twice the 31-yr running median absolute deviation. We then studied the spatial pattern of volcanic sulfate deposition on Greenland and Antarctica, and combined this knowledge with a new understanding of stratospheric transport of volcanic aerosols to produce a forcing index that is a function of month from 501 to 2000 CE, latitude in 10° bands, and height from 9 to 30 km at 0.5 km resolution. This index is the longest and iii most advanced volcanic forcing index of the type. It eliminates or minimizes many aspects of problems previous reconstruction had with the ice core records. The estimated uncertainty is a significant reduction from the factor of two uncertainty reported in previously constructed volcanic forcing indices.We forced an energy balance climate model with this new volcanic forcing index, together with solar and anthropogenic forcing, to simulate the large scale temperature response. The results agree well with instrumental observations for the past 150 years and the proxy records for the last millennium. Through better characterization of the natural causes of climate change, this new index will lead to improved prediction of anthropogenic impacts on climate.Using 33 ice core records we investigated the 15 th century Kuwae eruption. We found it was indeed a single-phase eruption occurred during late 1452 to early 1453 CE and it emitted about 140 Tg of sulfate aerosols into the stratosphere with 2(SH):1(NH) hemispheric partitioning. This finding provides an important reference to evaluate and improve the dating of ice core records.iv My Contribution to the WorkThis dissertation work utilized ice core records from both Greenland and Antarctica to reconstruct a monthly and spatially dependent volcanic forcing index that is applicable to general circulation models. Dr. Alan Robock and Dr. Melissa Free developed the first ice-core-based volcanic forcing index (IVI) using multiple ice core records [Robock and Free, 1995]. With the recovery of large number of new ice cores, Dr.Robock and Dr. Caspar Ammann proposed to develop a new index utilizing all of the available ice cores. My primary contribution to the work was to collect and process the ice core records, identify the steps to reconstruct the index, search and decide the methodology involved in each steps through numerous communications with Dr. Robock and other scientists, write programs to reconstruct the index and repo...
Soil moisture is an important variable in the climate system. Understanding and predicting variations of surface temperature, drought, and flood depend critically on knowledge of soil moisture variations, as do impacts of climate change and weather forecasting. An observational dataset of actual in situ measurements is crucial for climatological analysis, for model development and evaluation, and as ground truth for remote sensing. To that end, the Global Soil Moisture Data Bank, a Web site (http://climate.envsci.rutgers.edu/soil_moisture) dedicated to collection, dissemination, and analysis of soil moisture data from around the globe, is described. The data bank currently has soil moisture observations for over 600 stations from a large variety of global climates, including the former Soviet Union, China, Mongolia, India, and the United States. Most of the data are in situ gravimetric observations of soil moisture; all extend for at least 6 years and most for more than 15 years. Most of the stations have grass vegetation, and some are agricultural. The observations have been used to examine the temporal and spatial scales of soil moisture variations, to evaluate Atmospheric Model Intercomparison Project, Project for Intercomparison of Land-Surface Parameterization Schemes, and Global Soil Wetness Project simulations of soil moisture, for remote sensing of soil moisture, for designing new soil moisture observational networks, and to examine soil moisture trends. For the top 1-m soil layers, the temporal scale of soil moisture variation at all midlatitude sites is 1.5 to 2 months and the spatial scale is about 500 km. Land surface models, in general, do not capture the observed soil moisture variations when forced with either model-generated or observed meteorology. In contrast to predictions of summer desiccation with increasing temperatures, for the stations with the longest records summer soil moisture in the top 1 m has increased while temperatures have risen. The increasing trend in precipitation more than compensated for the enhanced evaporation.
[1] Anthropogenic stratospheric aerosol production, so as to reduce solar insolation and cool Earth, has been suggested as an emergency response to geoengineer the planet in response to global warming. While volcanic eruptions have been suggested as innocuous examples of stratospheric aerosols cooling the planet, the volcano analog actually argues against geoengineering because of ozone depletion and regional hydrologic and temperature responses. To further investigate the climate response, here we simulate the climate response to both tropical and Arctic stratospheric injection of sulfate aerosol precursors using a comprehensive atmosphere-ocean general circulation model, the National Aeronautics and Space Administration Goddard Institute for Space Studies ModelE. We inject SO 2 and the model converts it to sulfate aerosols, transports the aerosols and removes them through dry and wet deposition, and calculates the climate response to the radiative forcing from the aerosols. We conduct simulations of future climate with the Intergovernmental Panel on Climate Change A1B business-as-usual scenario both with and without geoengineering and compare the results. We find that if there were a way to continuously inject SO 2 into the lower stratosphere, it would produce global cooling. Tropical SO 2 injection would produce sustained cooling over most of the world, with more cooling over continents. Arctic SO 2 injection would not just cool the Arctic. Both tropical and Arctic SO 2 injection would disrupt the Asian and African summer monsoons, reducing precipitation to the food supply for billions of people. These regional climate anomalies are but one of many reasons that argue against the implementation of this kind of geoengineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.