Abstract. This research presents a Field Programmable Gate Array (FPGA) implementation of a taste recognition model. The model is based on simple integrate and fire neurons and facilitates an on-line learning. The whole system, including the hardware required to build (evolve) the network was hosted on one FPGA chip. The implementation used 45% of the logic elements, 76% of the memory, and 23% of the dedicated multiplier slices of the chip. FPGA size was sufficient for 64 neurons with up to 64 synapses each (a total of 4096 synapses). The proposed FPGA implementation was successfully applied to a classification problem of taste recognition and the FPGA implementation was at least 10 times faster when evolving the network and 74 times faster during the classification than the software simulations executed by a stand-alone PC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.