The beetle suborder Adephaga has been the subject of many phylogenetic reconstructions utilizing a variety of data sources and inference methods. However, no strong consensus has yet emerged on the relationships among major adephagan lineages. Ultraconserved elements (UCEs) have proved useful for inferring difficult or unresolved phylogenies at varying timescales in vertebrates, arachnids and Hymenoptera. Recently, a UCE bait set was developed for Coleoptera using polyphagan genomes and a member of the order Strepsiptera as an outgroup. Here, we examine the utility of UCEs for reconstructing the phylogeny of adephagan families, in the first in vitro application a UCE bait set in Coleoptera. Our final dataset included 305 UCE loci for 18 representatives of all adephagan families except Aspidytidae, and two polyphagan outgroups, with a total concatenated length of 83 547 bp. We inferred trees using maximum likelihood analyses of the concatenated UCE alignment and coalescent species tree methods (astral ii, ASTRID, svdquartets). Although the coalescent species tree methods had poor resolution and weak support, concatenated analyses produced well-resolved, highly supported trees. Hydradephaga was recovered as paraphyletic, with Gyrinidae sister to Geadephaga and all other adephagans. Haliplidae was recovered as sister to Dytiscoidea, with Hygrobiidae and Amphizoidae successive sisters to Dytiscidae. Finally, Noteridae was recovered as monophyletic and sister to Meruidae. Given the success of UCE data for resolving phylogenetic relationships within Adephaga, we suggest the potential for further resolution of relationships within Adephaga using UCEs with improved taxon sampling, and by developing Adephaga-specific probes.
The interplay of natural selection and genetic drift, influenced by geographic isolation, mating systems and population size, determines patterns of genetic diversity within species. The sperm whale provides an interesting example of a long-lived species with few geographic barriers to dispersal. Worldwide mtDNA diversity is relatively low, but highly structured among geographic regions and social groups, attributed to female philopatry. However, it is unclear whether this female philopatry is due to geographic regions or social groups, or how this might vary on a worldwide scale. To answer these questions, we combined mtDNA information for 1091 previously published samples with 542 newly obtained DNA profiles (394-bp mtDNA, sex, 13 microsatellites) including the previously unsampled Indian Ocean, and social group information for 541 individuals. We found low mtDNA diversity (π = 0.430%) reflecting an expansion event <80 000 years bp, but strong differentiation by ocean, among regions within some oceans, and among social groups. In comparison, microsatellite differentiation was low at all levels, presumably due to male-mediated gene flow. A hierarchical amova showed that regions were important for explaining mtDNA variance in the Indian Ocean, but not Pacific, with social group sampling in the Atlantic too limited to include in analyses. Social groups were important in partitioning mtDNA and microsatellite variance within both oceans. Therefore, both geographic philopatry and social philopatry influence genetic structure in the sperm whale, but their relative importance differs by sex and ocean, reflecting breeding behaviour, geographic features and perhaps a more recent origin of sperm whales in the Pacific. By investigating the interplay of evolutionary forces operating at different temporal and geographic scales, we show that sperm whales are perhaps a unique example of a worldwide population expansion followed by rapid assortment due to female social organization.
During the last 2 centuries, southern right whales Eubalaena australis were hunted to near extinction, and an estimated 150 000 were killed by pre-industrial whaling in the 19th century and illegal Soviet whaling in the 20th century. Here we focus on the coastal calving grounds of Australia and New Zealand (NZ), where previous work suggests 2 genetically distinct stocks of southern right whales are recovering. Historical migration patterns and spatially variable patterns of recovery suggest each of these stocks are subdivided into 2 stocks: (1) NZ, comprising NZ subantarctic (NZSA) and mainland NZ (MNZ) stocks; and (2) Australia, comprising southwest and southeast stocks. We expand upon previous work to investigate population subdivision by analysing over 1000 samples collected at 6 locations across NZ and Australia, although sample sizes were small from some locations. Mitochondrial DNA (mtDNA) control region haplotypes (500 bp) and microsatellite genotypes (13 loci) were used to identify 707 individual whales and to test for genetic differentiation. For the first time, we documented the movement of 7 individual whales between the NZSA and MNZ based on the matching of multilocus genotypes. Given the current and historical evidence, we hypothesise that individuals from the NZ subantarctic are slowly recolonising MNZ, where a former calving ground was extirpated. We also suggest that southeast Australian right whales represent a remnant stock, distinct from the southwest Australian stock, based on significant differentiation in mtDNA haplotype frequencies (F ST = 0.15, p < 0.01; Φ ST = 0.12, p = 0.02) and contrasting patterns of recovery. In comparison with significant differences in mtDNA haplotype frequencies found between the 3 proposed stocks (overall F ST = 0.07, Φ ST = 0.12, p < 0.001), we found no significant differentiation in microsatellite loci (overall
Adephaga is the second largest suborder of beetles (Coleoptera) and they serve as important arthropod predators in both aquatic and terrestrial ecosystems. The suborder is divided into Geadephaga comprising terrestrial families and Hydradephaga for aquatic lineages. Despite numerous studies, phylogenetic relationships among the adephagan families and monophyly of the Hydradephaga itself remain in question.Here we conduct a comprehensive phylogenomic analysis of the suborder using ultraconserved elements (UCEs). This study presents the first in vitro test of a newly developed UCE probe set customized for use within Adephaga that includes both probes tailored specifically for the suborder, alongside generalized Coleoptera probes previously found to work in adephagan taxa. We assess the utility of the entire probe set, as well as comparing the tailored and generalized probes alone for reconstructing evolutionary relationships. Our analyses recovered strong support for the paraphyly of Hydradephaga with whirligig beetles (Gyrinidae) placed as sister to all other adephagan families. Geadephaga was strongly supported as monophyletic and placed sister to a clade composed of Haliplidae + Dytiscoidea. Monophyly of Dytiscoidea was strongly supported with relationships among the dytiscoid families resolved and strongly supported. Relationships among the subfamilies of Dytiscidae were strongly supported but largely incongruent with prior phylogenetic estimates for the family. The results of our UCE probe comparison showed that tailored probes alone outperformed generalized probes alone, as well as the full combined probe set (containing both types of probes), under decreased taxon sampling. When taxon sampling was increased, the full combined probe set outperformed both tailored probes and generalized probes alone. This study provides further evidence that UCE probe sets customized for a focal group result in a greater number of recovered loci and substantially improve phylogenomic analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.