The beetle suborder Adephaga has been the subject of many phylogenetic reconstructions utilizing a variety of data sources and inference methods. However, no strong consensus has yet emerged on the relationships among major adephagan lineages. Ultraconserved elements (UCEs) have proved useful for inferring difficult or unresolved phylogenies at varying timescales in vertebrates, arachnids and Hymenoptera. Recently, a UCE bait set was developed for Coleoptera using polyphagan genomes and a member of the order Strepsiptera as an outgroup. Here, we examine the utility of UCEs for reconstructing the phylogeny of adephagan families, in the first in vitro application a UCE bait set in Coleoptera. Our final dataset included 305 UCE loci for 18 representatives of all adephagan families except Aspidytidae, and two polyphagan outgroups, with a total concatenated length of 83 547 bp. We inferred trees using maximum likelihood analyses of the concatenated UCE alignment and coalescent species tree methods (astral ii, ASTRID, svdquartets). Although the coalescent species tree methods had poor resolution and weak support, concatenated analyses produced well-resolved, highly supported trees. Hydradephaga was recovered as paraphyletic, with Gyrinidae sister to Geadephaga and all other adephagans. Haliplidae was recovered as sister to Dytiscoidea, with Hygrobiidae and Amphizoidae successive sisters to Dytiscidae. Finally, Noteridae was recovered as monophyletic and sister to Meruidae. Given the success of UCE data for resolving phylogenetic relationships within Adephaga, we suggest the potential for further resolution of relationships within Adephaga using UCEs with improved taxon sampling, and by developing Adephaga-specific probes.
Adephaga is the second largest suborder of beetles (Coleoptera) and they serve as important arthropod predators in both aquatic and terrestrial ecosystems. The suborder is divided into Geadephaga comprising terrestrial families and Hydradephaga for aquatic lineages. Despite numerous studies, phylogenetic relationships among the adephagan families and monophyly of the Hydradephaga itself remain in question.Here we conduct a comprehensive phylogenomic analysis of the suborder using ultraconserved elements (UCEs). This study presents the first in vitro test of a newly developed UCE probe set customized for use within Adephaga that includes both probes tailored specifically for the suborder, alongside generalized Coleoptera probes previously found to work in adephagan taxa. We assess the utility of the entire probe set, as well as comparing the tailored and generalized probes alone for reconstructing evolutionary relationships. Our analyses recovered strong support for the paraphyly of Hydradephaga with whirligig beetles (Gyrinidae) placed as sister to all other adephagan families. Geadephaga was strongly supported as monophyletic and placed sister to a clade composed of Haliplidae + Dytiscoidea. Monophyly of Dytiscoidea was strongly supported with relationships among the dytiscoid families resolved and strongly supported. Relationships among the subfamilies of Dytiscidae were strongly supported but largely incongruent with prior phylogenetic estimates for the family. The results of our UCE probe comparison showed that tailored probes alone outperformed generalized probes alone, as well as the full combined probe set (containing both types of probes), under decreased taxon sampling. When taxon sampling was increased, the full combined probe set outperformed both tailored probes and generalized probes alone. This study provides further evidence that UCE probe sets customized for a focal group result in a greater number of recovered loci and substantially improve phylogenomic analysis.
Targeted capture and enrichment approaches have proven effective for phylogenetic study. Ultraconserved elements (UCEs) in particular have exhibited great utility for phylogenomic analyses, with the software package phyluce being among the most utilized pipelines for UCE phylogenomics, including probe design. Despite the success of UCEs, it is becoming increasing apparent that diverse lineages require probe sets tailored to focal taxa in order to improve locus recovery. However, factors affecting probe design and methods for optimizing probe sets to focal taxa remain underexplored. Here, we use newly available beetle (Coleoptera) genomic resources to investigate factors affecting UCE probe set design using phyluce. In particular, we explore the effects of stringency during initial design steps, as well as base genome choice on resulting probe sets and locus recovery. We found that both base genome choice and initial bait design stringency parameters greatly alter the number of resultant probes included in final probe sets and strongly affect the number of loci detected and recovered during in silico testing of these probe sets. In addition, we identify attributes of base genomes that correlated with high performance in probe design. Ultimately, we provide a recommended workflow for using Phyluce to design an optimized UCE probe set that will work across a targeted lineage, and use our findings to develop a new, open‐source UCE probe set for beetles of the suborder Adephaga.
The temporal origin of Madagascar’s extraordinary endemic diversity is debated. A preference for Cenozoic dispersal origins has replaced the classical view of Mesozoic vicariance in the wake of molecular dating. However, evidence of ancient origins is mounting from arthropod groups. Using phylogenetic ‘tip-dating’ analysis with fossils, we show that a whirligig beetle species, Heterogyrus milloti, inhabiting forest streams in southeastern Madagascar is the last survivor of a once dominant and widespread Mesozoic group. With a Late Triassic to Early Jurassic origin (226–187 Ma) it is the hitherto oldest dated endemic lineage of animal or plant on Madagascar. Island biotas’ sensitivity to extinction is well known, but islands can also provide refuge from continental extinction. Heterogyrus milloti is an irreplaceable link to the freshwater biota of the Mesozoic and serves as a reminder of what may be lost without critical conservation efforts on Madagascar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.