Legume lectins, despite high sequence homology, express diverse biological activities that vary in potency and efficacy. In studies reported here, the mannose-specific lectin from Cymbosema roseum (CRLI), which binds N-glycoproteins, shows both pro-inflammatory effects when administered by local injection and anti-inflammatory effects when by systemic injection. Protein sequencing was obtained by Tandem Mass Spectrometry and the crystal structure was solved by X-ray crystallography using a Synchrotron radiation source. Molecular replacement and refinement were performed using CCP4 and the carbohydrate binding properties were described by affinity assays and computational docking. Biological assays were performed in order to evaluate the lectin edematogenic activity. The crystal structure of CRLI was established to a 1.8Å resolution in order to determine a structural basis for these differing activities. The structure of CRLI is closely homologous to those of other legume lectins at the monomer level and assembles into tetramers as do many of its homologues. The CRLI carbohydrate binding site was predicted by docking with a specific inhibitory trisaccharide. CRLI possesses a hydrophobic pocket for the binding of α-aminobutyric acid and that pocket is occupied in this structure as are the binding sites for calcium and manganese cations characteristic of legume lectins. CRLI route-dependent effects for acute inflammation are related to its carbohydrate binding domain (due to inhibition caused by the presence of α-methyl-mannoside), and are based on comparative analysis with ConA crystal structure. This may be due to carbohydrate binding site design, which differs at Tyr12 and Glu205 position.
Diocleinae lectins administered per oral route in mice inhibited the abdominal constrictions induced by acetic acid. The percentage of the lectins antinociception varied from 61% for Canavalia grandiflora (ConGf) to 20% for Dioclea violacea. ConGf inhibited contortions at all doses tested but not in a dose-dependent manner, involving carbohydrate recognition.
Vatairea guianensis lectin (VGL), Dalbergiae tribe, is a N-acetyl-galactosamine (GalNAc)/Galactose (Gal) lectin previously purified and characterized. In this work, we report its structural features, obtained from bioinformatics tools, and its inflammatory effect, obtained from a rat paw edema model. The VGL model was obtained by homology with the lectin of Vatairea macrocarpa (VML) as template, and we used it to demonstrate the common characteristics of legume lectins, such as the jellyroll motif and presence of a metal-binding site in the vicinity of the carbohydrate-recognition domain (CRD). Protein-ligand docking revealed favorable interactions with N-acetyl-d-galactosamine, d-galactose and related sugars as well as several biologically relevant N- and O-glycans. In vivo testing of paw edema revealed that VGL induces edematogenic effect involving prostaglandins, interleukins and VGL CRD. Taken together, these data corroborate with previous reports showing that VGL interacts with N- and/or O-glycans of molecular targets, particularly in those presenting galactosides in their structure, contributing to the lectin inflammatory effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.