A new galactose-specific lectin, named BBL, was purified from seeds of Bauhinia bauhinioides by precipitation with ammonium sulfate, followed by two steps of ion exchange chromatography. BBL haemagglutinated rabbit erythrocytes (native and treated with proteolytic enzymes) showing stability even after exposure to 60 °C for an hour. The lectin haemagglutinating activity was optimum between pH 8.0 and 9.0 and inhibited after incubation with D-galactose and its derivatives, especially α-methyl-D-galactopyranoside. The pure protein possessed a molecular mass of 31 kDa by SDS-PAGE and 28.310 Da by mass spectrometry. The lectin pro-inflammatory activity was also evaluated. The s.c. injection of BBL into rats induced a dose-dependent paw edema, an effect that occurred via carbohydrate site interaction and was significantly reduced by L-NAME, suggesting an important participation of nitric oxide in the late phase of the edema. These findings indicate that BBL can be used as a tool to better understand the mechanisms involved in inflammatory responses.
Recent studies have shown that lectins are promising tools for use in various biotechnological processes, as well as studies of various pathological mechanisms, isolation, and characterization of glycoconjugates and understanding the mechanisms underlying pathological mechanisms conditions, including the inflammatory response. This study aimed to purify, characterize physicochemically, and predict the biological activity of Canavalia oxyphylla lectin (CoxyL) in vitro and in vivo. CoxyL was purified by a single-step affinity chromatography in Sephadex® G-50 column. Sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that the pure lectin consists of a major band of 30 kDa (α-chain) and two minor components (β-chain and γ-chain) of 16 and 13 kDa, respectively. These data were further confirmed by electrospray ionization mass spectrometry, suggesting that CoxyL is a typical ConA-like lectin. In comparison with the average molecular mass of α-chain, the partial amino acid sequence obtained corresponds to approximately 45% of the total CoxyL sequence. CoxyL presented hemagglutinating activity that was specifically inhibited by monosaccharides (D-glucose, D-mannose, and α-methyl-D-mannoside) and glycoproteins (ovalbumin and fetuin). Moreover, CoxyL was shown to be thermostable, exhibiting full hemagglutinating activity up to 60°C, and it was pH-sensitive for 1 h, exhibiting maximal activity at pH 7.0. CoxyL caused toxicity to Artemia nauplii and induced paw edema in rats. This biological activity highlights the importance of lectins as important tools to better understand the mechanisms underlying inflammatory responses.
Parkia biglobosa (subfamily Mimosoideae), a typical tree from African savannas, possess a seed lectin that was purified by combination of ammonium sulfate precipitation and affinity chromatography on a Sephadex G-100 column. The P. biglobosa lectin (PBL) strongly agglutinated rabbit erythrocytes, an effect that was inhibited by d-mannose and d-glucose-derived sugars, especially α-methyl-d-mannopyranoside and N-acetyl-d-glucosamine. The hemagglutinating activity of PBL was maintained after incubation at a wide range of temperature and pH and also was independent of divalent cations. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, PBL exhibited an electrophoretic profile consisting of a single band with apparent molecular mass of 45 kDa. An analysis using electrospray ionization-mass spectrometry indicated that purified lectin possesses a molecular average mass of 47 562 ± 4 Da, and the analysis by gel filtration showed that PBL is a dimer in solution. The complete amino acid sequence of PBL, as determined using tandem mass spectrometry, consists of 443 amino acid residues. PBL is composed of a single non-glycosylated polypeptide chain of three tandemly arranged jacalin-related domains. Sequence heterogeneity was found in six positions, indicating that the PBL preparations contain highly homologous isolectins. PBL showed important antinociceptive activity associated to the inhibition of inflammatory process.
The lectin from seeds of Dioclea virgata (DvirL) was purified in a single step affinity chromatography, sequenced by tandem mass spectrometry and submitted to crystallization and biological experiments. DvirL has a molecular mass of 25,412 ± 2 Da and the chains β and γ has 12,817 Da ± 2 and 12,612 Da ± 2, respectively. Primary sequence determination was assigned by tandem mass spectrometry and revealed a protein with 237 amino acids and 87% of identify with ConA. The protein crystals were obtained native and complexed with X-Man using vapor-diffusion method at a constant temperature of 293 K. A complete X-ray dataset was collected at 1.8 Å resolution. DvirL crystals were found to be orthorhombic, belonging to the space group I222, with a unit cell parameters a = 647.5 Å, b = 86.6 Å, c = 90.2 Å. Molecular replacement search found a solution with a correlation coefficient of 77.1% and an R(factor) of 44.6%. The present study also demonstrated that D. virgata lectin presents edematogenic and antinociceptive activities in rodents electing this protein as a candidate to structure/function analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.