The USAF requirements for the durability and damage tolerance certification for additively manufactured (AM) aircraft structural parts, which are detailed in Structures Bulletin EZ-19-01, raise a number of new and, as yet, unanswered questions. The present paper attempts to address three questions: How to perform a fracture mechanics-based analysis of crack growth in an AM part so as to account for the residual stresses, how to perform a fracture mechanics-based durability analysis of a cold spray repair so as to account for both the induced residual stresses and the presence of multiple co-located cracks, and how to perform a fracture mechanics-based durability analysis of an AM part so as to account for the presence of multiple collocated surface braking cracks. In this context, the present paper reveals the potential of the Hartman–Schijve variant of the NASGRO crack growth equation to accurately predict the growth of each of the individual (collocated) cracks that arose in a cold spray-repaired specimen and in a specimen from a crack that nucleated and grew from a rough surface.
MIL-STD 1530D requires that the certification of an aircraft part employ analytical tools that are capable of modeling crack growth. It is further stated that the durability and damage tolerance (DADT) analyses should be based on linear elastic fracture mechanics (LEFM) and follow a building block approach. This paper illustrates the durability analysis required to certify an additively manufactured part by using the examples of durability tests performed on two wire arc additively manufactured (WAAM) 18Ni 250 Maraging steel specimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.