Acoustic emission (AE) monitoring shows promise as one of the most effective methods for condition monitoring of adhesively-bonded joints. Previous research has demonstrated its ability to detect, locate and classify adhesive joint failure, though in these studies little attention appears to have been paid to the differences in AE wave propagation through the bonded and un-bonded sections of the specimens tested, or to the effects of the wave modes excited or the propagation distances. This paper details an experimental study conducted on large aluminium sheet specimens to identify the effects of the presence of an adhesive layer on AE wave propagation. Three specimens are considered; a single aluminium sheet, two aluminium sheets placed together without adhesive, and an adhesively-bonded specimen. A pencil lead break (PLB) is used as a simulated AE source, and is applied to the three specimens at varying propagation distances and orientations. The acquired signals are processed using wavelet-transforms to explore time-frequency features, and compared with modified group-velocity curves based on the Rayleigh-Lamb equations to allow identification of wave-modes and edge-reflections. The effects of propagation distance and source orientation are investigated while comparison is made between the three specimens. It is concluded that while the wave propagation modes can be approximated as being constant throughout all three specimens, there is a significant change in the received waveforms due to the attenuation of high-frequency components exhibited by the bonded specimen. These findings may be utilised to provide a deeper understanding of acquired AE data, improving the current abilities to identify, locate and characterise damage mechanisms occurring within adhesive joints, ultimately improving safety in the use of adhesive bonding for critical applications.
This paper studies the prototype development of the vibro-impact capsule system aiming for autonomous mobile sensing for pipeline inspection. Self-propelled progression of the system is obtained by employing a vibro-impact oscillator encapsuled in the capsule without the requirement of any external mechanisms, such as wheels, arms, or legs. A dummy capsule prototype is designed, and the best geometric parameters, capsule and cap arc lengths, for minimizing fluid resistance forces are obtained through two-dimensional and three-dimensional computational fluid dynamics analyses, which are confirmed by wind tunnel tests. In order to verify the concept of self-propulsion, both original and optimized capsule prototypes are tested in a fluid pipe. Experimental results are compared with computational fluid dynamics simulations to confirm the efficacy of the vibro-impact self-propelled driving.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.