We report a synthetic method to build oriented architectures with three coaxial π-stacks directly on solid surfaces. The approach operates with orthogonal dynamic bonds, disulfides and hydrazones, self-organizing surface-initiated polymerization (SOSIP), and templated stack-exchange (TSE). Compatibility with naphthalenediimides, perylenediimides, squaraines, fullerenes, oligothiophenes, and triphenylamine is confirmed. Compared to photosystems composed of two coaxial channels, the installation of a third channel increases photocurrent generation up to 10 times. Limitations concern giant stack exchangers that fail to enter SOSIP architectures (e.g., phthalocyanines surrounded by three fullerenes), and planar triads that can give folded or interdigitated charge-transfer architectures rather than three coaxial channels. The reported triple-channel surface architectures are as sophisticated as it gets today, the directionality of their construction promises general access to multichannel architectures with multicomponent gradients in each individual channel. The reported approach will allow us to systematically unravel the ultrafast photophysics of molecular dyads and triads in surface architectures, and might become useful to develop conceptually innovative optoelectronic devices.
The synthesis of multicomponent surface architectures with a thus far inaccessible level of sophistication is accomplished, and the functional relevance of this unprecedented structural complexity is demonstrated. Co-axial channels of oligothiophenes and fullerenes for the transport of holes and electrons, respectively, are equipped with antiparallel-oriented redox gradients with up to three components that drive the charges apart after their generation with light. In the resulting photosystems, charge recombination decreases with each level of sophistication from 29% to 2%, approaching complete suppression. Photocurrents increase correspondingly, and thermal activation barriers decrease. Increasing turn-on voltages for dark current indicates that charges struggle to move backwards up gradients possessing increasing numbers of components. These results demonstrate that the application of the most complex lessons from nature to organic materials is possible and worthwhile, thus supporting curiosity-driven efforts to learn how to synthesize multicomponent architectures of the highest possible sophistication with the highest possible precision
Like beads on a string: A synthetic method for the directional construction of strings of spherical fullerenes along stacks of planar oligothiophenes is described. The key to success was the preparation of fullerenes with two solubilizing tri(ethylene glycol) tails (bold) and an aromatic aldehyde for covalent capture by hydrazides along the oligothiophene stacks (red)
The development of synthetic methods to build complex functional systems is a central and current challenge in organic chemistry. This goal is important because supramolecular architectures of highest sophistication account for function in nature, and synthetic organic chemistry, contrary to high standards with small molecules, fails to deliver functional systems of similar complexity. In this report, we introduce a collection of fullerenes that is compatible with the construction of multicomponent charge-transfer cascades and can be placed in triple-channel architectures next to stacks of oligothiophenes and naphthalenediimides. For the creation of this collection, modern fullerene chemistry-methanofullerenes and 1,4-diarylfullerenes-is combined with classical Nierengarten-Diederich-Bingel approaches.
Fullerenes of increasing electron deficiency are designed, synthesized and evaluated in multicomponent surface architectures to ultimately build gradients in LUMO levels with nine components over 350 meV down to -4.22 eV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.