Cross-linked poly(ε-caprolactone) (PCL) is a smart biocompatible polymer exhibiting two-way shape memory effect. PCL samples with different cross-link density were synthesized by heating the polymer with various amounts of radical initiator benzoyl peroxide (BPO). Non-isothermal crystallization kinetics was characterized by means of conventional differential scanning calorimetry (DSC) and fast scanning calorimetry (FSC). The latter technique was used to obtain the dependence of the degree of crystallinity on the preceding cooling rate by following the enthalpies of melting for each sample. It is shown that the cooling rate required to keep the cooled sample amorphous decreases with increasing cross-link density, i.e., crystallization process slows down monotonically. Covalent bonds between polymer chains impede the crystallization process. Consequently, FSC can be used as a rather quick and low sample consuming method to estimate the degree of cross-linking of PCL samples.
The crystal nucleation and overall crystallization kinetics of cross-linked poly(ε-caprolactone) was studied experimentally by fast scanning calorimetry in a wide temperature range. With an increasing degree of cross-linking, both the nucleation and crystallization half-times increase. Concurrently, the glass transition range shifts to higher temperatures. In contrast, the temperatures of the maximum nucleation and the overall crystallization rates remain the same, independent of the degree of cross-linking. The cold crystallization peak temperature generally increases as a function of heating rate, reaching an asymptotic value near the temperature of the maximum growth rate. A theoretical interpretation of these results is given in terms of classical nucleation theory. In addition, it is shown that the average distance between the nearest cross-links is smaller than the estimated lamellae thickness, which indicates the inclusion of cross-links in the crystalline phase of the polymer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.