Body drag, D, and the overall mechanical efficiency of swimming, e, were measured from the relationship between extra oxygen consumption and extra drag loads in 42 male and 22 female competitive swimmers using the front crawl at speeds ranging from 0.4 to 1.2 m/s. D increased from 3.4 (1.9) kg at 0.5 m/s to 8.2 (7.0) kg at 1.2 m/s, with D of women (in brackets) being significantly less (P less than 0.05) than that of men. Mechanical efficiency increased from 2.9% at 0.5 m/s to 7.4% at 1.2 m/s for men, the values for women being somewhat greater than those for men. The ratio, D/e was shown to be identical to the directly measured energy cost of swimming one unit distance, V02/d, and was independent of the velocity up to 1.2 m/s. It averaged 52 and 37 l/km for men and women respectively (P less than 0.05). When corrected for body surface area the values were 27 and 22 l/km-m2 for men and women, respectively (P less than 0.05). The underwater torque, T, a measure of the tendency of the feet to sink, was 1.44 kg-m for men and 0.70 kg-m for women (P less than 0.05). VO2/d increased linearly with T for both men and women of similar competitive experience. However, the proportionality constant delta VO2/d-delta T was significantly less for competitive than noncompetitive swimmers. The analysis of the relationship VO2/d vs. T provides a valuable approach to the understanding of the energetics of swimming.
In this paper a complete energy balance for water locomotion is attempted with the aim of comparing different modes of transport in the aquatic environment (swimming underwater with SCUBA diving equipment, swimming at the surface: leg kicking and front crawl, kayaking and rowing). On the basis of the values of metabolic power (E), of the power needed to overcome water resistance (Wd) and of propelling efficiency (etaP=Wd/Wtot, where Wtot is the total mechanical power) as reported in the literature for each of these forms of locomotion, the energy cost per unit distance (C=E/v, where v is the velocity), the drag (performance) efficiency (etad=Wd/E) and the overall efficiency (etao=Wtot/E=etad/etaP) were calculated. As previously found for human locomotion on land, for a given metabolic power (e.g. 0.5 kW=1.43 l.min(-1) VO2) the decrease in C (from 0.88 kJ.m(-1) in SCUBA diving to 0.22 kJ.m(-1) in rowing) is associated with an increase in the speed of locomotion (from 0.6 m.s(-1) in SCUBA diving to 2.4 m.s(-1) in rowing). At variance with locomotion on land, however, the decrease in C is associated with an increase, rather than a decrease, of the total mechanical work per unit distance (Wtot, kJ.m(-1)). This is made possible by the increase of the overall efficiency of locomotion (etao=Wtot/E=Wtot/C) from the slow speeds (and loads) of swimming to the high speeds (and loads) attainable with hulls and boats (from 0.10 in SCUBA diving to 0.29 in rowing).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.