In this work, we explore the formation of the protein corona after exposure of metallic Au nanoparticles (NPs), with sizes ranging from 4 to 40 nm, to cell culture media containing 10% of fetal bovine serum. Under in vitro cell culture conditions, zeta potential measurements, UV-vis spectroscopy, dynamic light scattering and transmission electron microscope analysis were used to monitor the time evolution of the inorganic NP-protein corona formation and to characterize the stability of the NPs and their surface state at every stage of the experiment. As expected, the red-shift of the surface plasmon resonance peak, as well as the drop of surface charge and the increase of the hydrodynamic diameter indicated the conjugation of proteins to NPs. Remarkably, an evolution from a loosely attached toward an irreversible attached protein corona over time was observed. Mass spectrometry of the digested protein corona revealed albumin as the most abundant component which suggests an improved biocompatibility.
Interaction of nanoparticles with proteins is the basis of nanoparticle bio-reactivity. This interaction gives rise to the formation of a dynamic nanoparticle-protein corona. The protein corona may influence cellular uptake, inflammation, accumulation, degradation and clearance of the nanoparticles. Furthermore, the nanoparticle surface can induce conformational changes in adsorbed protein molecules which may affect the overall bio-reactivity of the nanoparticle. In depth understanding of such interactions can be directed towards generating bio-compatible nanomaterials with controlled surface characteristics in a biological environment. The main aim of this review is to summarise current knowledge on factors that influence nanoparticle-protein interactions and their implications on cellular uptake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.