We study the initial-value problem for a general class of nonlinear nonlocal wave equations arising in one-dimensional nonlocal elasticity. The model involves a convolution integral operator with a general kernel function whose Fourier transform is nonnegative. We show that some well-known examples of nonlinear wave equations, such as Boussinesq-type equations, follow from the present model for suitable choices of the kernel function. We establish global existence of solutions of the model assuming enough smoothness on the initial data together with some positivity conditions on the nonlinear term. Furthermore, conditions for finite time blow-up are provided.
In one space dimension, a non-local elastic model is based on a single integral law, giving the stress when the strain is known at all spatial points. In this study, we first derive a higher-order Boussinesq equation using locally non-linear theory of 1D non-local elasticity and then we are able to show that under certain conditions the Cauchy problem is globally well-posed.
In this paper we provide a formal derivation of both the Camassa-Holm equation and the fractional Camassa-Holm equation for the propagation of small-but-finite amplitude long waves in a nonlocally and nonlinearly elastic medium. We first show that the equation of motion for the nonlocally and nonlinearly elastic medium reduces to the improved Boussinesq equation for a particular choice of the kernel function appearing in the integral-type constitutive relation. We then derive the Camassa-Holm equation from the improved Boussinesq equation using an asymptotic expansion valid as nonlinearity and dispersion parameters that tend to zero independently. Our approach follows mainly the standard techniques used widely in the literature to derive the Camassa-Holm equation for shallow-water waves. The case where the Fourier transform of the kernel function has fractional powers is also considered and the fractional Camassa-Holm equation is derived using the asymptotic expansion technique.
In this article we are concerned with the existence and orbital stability of traveling wave solutions of a general class of nonlocal wave equations: utt−Luxx=B(±|u|p−1u)xx, p>1. The main characteristic of this class of equations is the existence of two sources of dispersion, characterized by two coercive pseudo-differential operators L and B . Members of the class arise as mathematical models for the propagation of dispersive waves in a wide variety of situations. For instance, all Boussinesq-type equations and the so-called double-dispersion equation are members of the class. We first establish the existence of traveling wave solutions to the nonlocal wave equations considered. We then obtain results on the orbital stability or instability of traveling waves. For the case L=I, corresponding to a class of Klein–Gordon-type equations, we give an almost complete characterization of the values of the wave velocity for which the traveling waves are orbitally stable or unstable by blow-up.TÜBİTA
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.