We study the initial-value problem for a general class of nonlinear nonlocal wave equations arising in one-dimensional nonlocal elasticity. The model involves a convolution integral operator with a general kernel function whose Fourier transform is nonnegative. We show that some well-known examples of nonlinear wave equations, such as Boussinesq-type equations, follow from the present model for suitable choices of the kernel function. We establish global existence of solutions of the model assuming enough smoothness on the initial data together with some positivity conditions on the nonlinear term. Furthermore, conditions for finite time blow-up are provided.
In one space dimension, a non-local elastic model is based on a single integral law, giving the stress when the strain is known at all spatial points. In this study, we first derive a higher-order Boussinesq equation using locally non-linear theory of 1D non-local elasticity and then we are able to show that under certain conditions the Cauchy problem is globally well-posed.
We study the initial-value problem for a general class of nonlinear nonlocal coupled wave equations. The problem involves convolution operators with kernel functions whose Fourier transforms are nonnegative. Some well-known examples of nonlinear wave equations, such as coupled Boussinesq-type equations arising in elasticity and in quasi-continuum approximation of dense lattices, follow from the present model for suitable choices of the kernel functions. We establish local existence and sufficient conditions for finitetime blow-up and as well as global existence of solutions of the problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.