We study the problem of finite entailment of ontology-mediated queries. Going beyond local queries, we allow transitive closure over roles. We focus on ontologies formulated in the description logics ALCOI and ALCOQ, extended with transitive closure. For both logics, we show 2EXPTIME upper bounds for finite entailment of unions of conjunctive queries with transitive closure. We also provide a matching lower bound by showing that finite entailment of conjunctive queries with transitive closure in ALC is 2EXPTIME-hard
We investigate the problem of finite entailment of ontology-mediated queries. We consider the expressive query language, unions of conjunctive regular path queries (UCRPQs), extending the well-known class of union of conjunctive queries, with regular expressions over roles. We look at ontologies formulated using the description logic ALC, and show a tight 2ExpTime upper bound for entailment of UCRPQs. At the core of our decision procedure, there is a novel automata-based technique introducing a stratification of interpretations induced by the deterministic finite automaton underlying the input UCRPQ.
We study the problem of finite entailment of ontologymediated queries. Going beyond local queries, we allow transitive closure over roles. We focus on ontologies formulated in the description logics ALCOI and ALCOQ, extended with transitive closure. For both logics, we show 2EXPTIME upper bounds for finite entailment of unions of conjunctive queries with transitive closure. We also provide a matching lower bound by showing that finite entailment of conjunctive queries with transitive closure in ALC is 2EXPTIME-hard.
We investigate the problem of finite entailment of ontology-mediated queries. We consider the expressive query language, unions of conjunctive regular path queries (UCRPQs), extending the well-known class of unions of conjunctive queries, with regular expressions over roles. We look at ontologies formulated using the description logic ALC, and show a tight 2ExpTime upper bound for finite entailment of UCRPQs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.