S. cerevisiae inherits its vacuole by projecting vacuole-derived membrane vesicles and tubules into the bud, where they fuse to establish the daughter vacuole. This homotypic fusion event can be assayed in vitro. It requires Sec17p and Sec18p, the homologs of the mammalian alpha-SNAP and NSF, which cooperate in multiple steps of membrane trafficking. We now report that Sec17p, Sec18p, and ATP are only needed for an early stage of the reaction that results in Sec17p release. Sec17p and Sec18p actions precede, and are needed for, the step employing the Ras-like GTPase Ypt7p. Sec18p-driven release of Sec17p can even precede vacuole docking, as it can occur prior to mixing of vacuoles and is insensitive to vacuole concentration. Sec17p and Sec18p thus may function in a predocking stage of the reaction, rather than in bilayer fusion per se.
Membrane fusion is necessary both in the eukaryotic secretory pathway and for the inheritance of organelles during the cell cycle. In the secretory pathway, heterotypic fusion takes place between small transport vesicles and organelles. It requires N-ethylmaleimide-sensitive fusion protein (NSF/Sec18p), soluble NSF attachment proteins (SNAPs/Sec17p) and SNAP receptors (SNAREs). SNAREs are integral membrane proteins (v-SNAREs on vesicles, t-SNAREs on the target organelles) and are thought to provide specificity to the fusion process. It has been suggested that Sec17p and Sec18p bind to v-SNARE/t-SNARE complexes and mediate the membrane fusion event. Homotypic fusion of yeast vacuoles also requires Sec17p and Sec18p (ref. 6), but in vitro they are needed only to 'prime' the vacuoles, not for subsequent docking or fusion. It has been unclear whether these reactions involve SNAREs that are similar to those previously identified in heterotypic fusion systems and, hence, whether the actions of Sec18p/NSF and Sec17p/alpha SNAP in these systems can be compared. Here we identify typical v- and t-SNAREs on the yeast vacuolar membrane. Although both are normally present, vacuoles containing only the v-SNARE can fuse with those containing only the t-SNARE. Vacuoles containing neither SNARE cannot fuse with those containing both, demonstrating that docking is mediated by cognate SNAREs on the two organelle membranes. Even when t- and v-SNAREs are on separate membranes, Sec17p and Sec18p act at the priming stage. Their action is not required at the point of assembly of the SNARE complex, nor for the fusion event itself.
Mechanical tension is an ever-present physiological stimulus essential for the development and homeostasis of locomotory, cardiovascular, respiratory, and urogenital systems. Tension sensing contributes to stem cell differentiation, immune cell recruitment, and tumorigenesis. Yet, how mechanical signals are transduced inside cells remains poorly understood. Here, we identify chaperone-assisted selective autophagy (CASA) as a tension-induced autophagy pathway essential for mechanotransduction in muscle and immune cells. The CASA complex, comprised of the molecular chaperones Hsc70 and HspB8 and the cochaperone BAG3, senses the mechanical unfolding of the actin-crosslinking protein filamin. Together with the chaperone-associated ubiquitin ligase CHIP, the complex initiates the ubiquitin-dependent autophagic sorting of damaged filamin to lysosomes for degradation. Autophagosome formation during CASA depends on an interaction of BAG3 with synaptopodin-2 (SYNPO2). This interaction is mediated by the BAG3 WW domain and facilitates cooperation with an autophagosome membrane fusion complex. BAG3 also utilizes its WW domain to engage in YAP/TAZ signaling. Via this pathway, BAG3 stimulates filamin transcription to maintain actin anchoring and crosslinking under mechanical tension. By integrating tension sensing, autophagosome formation, and transcription regulation during mechanotransduction, the CASA machinery ensures tissue homeostasis and regulates fundamental cellular processes such as adhesion, migration, and proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.