Mechanical tension is an ever-present physiological stimulus essential for the development and homeostasis of locomotory, cardiovascular, respiratory, and urogenital systems. Tension sensing contributes to stem cell differentiation, immune cell recruitment, and tumorigenesis. Yet, how mechanical signals are transduced inside cells remains poorly understood. Here, we identify chaperone-assisted selective autophagy (CASA) as a tension-induced autophagy pathway essential for mechanotransduction in muscle and immune cells. The CASA complex, comprised of the molecular chaperones Hsc70 and HspB8 and the cochaperone BAG3, senses the mechanical unfolding of the actin-crosslinking protein filamin. Together with the chaperone-associated ubiquitin ligase CHIP, the complex initiates the ubiquitin-dependent autophagic sorting of damaged filamin to lysosomes for degradation. Autophagosome formation during CASA depends on an interaction of BAG3 with synaptopodin-2 (SYNPO2). This interaction is mediated by the BAG3 WW domain and facilitates cooperation with an autophagosome membrane fusion complex. BAG3 also utilizes its WW domain to engage in YAP/TAZ signaling. Via this pathway, BAG3 stimulates filamin transcription to maintain actin anchoring and crosslinking under mechanical tension. By integrating tension sensing, autophagosome formation, and transcription regulation during mechanotransduction, the CASA machinery ensures tissue homeostasis and regulates fundamental cellular processes such as adhesion, migration, and proliferation.
The PQBP1 (polyglutamine tract-binding protein 1) gene encodes a nuclear protein that regulates pre-mRNA splicing and transcription. Mutations in the PQBP1 gene were reported in several X chromosome-linked mental retardation disorders including Golabi-Ito-Hall syndrome. The missense mutation that causes this syndrome is unique among other PQBP1 mutations reported to date because it maps within a functional domain of PQBP1, known as the WW domain. The mutation substitutes tyrosine 65 with cysteine and is located within the conserved core of aromatic amino acids of the domain. We show here that the binding property of the Y65C-mutated WW domain and the full-length mutant protein toward its cognate proline-rich ligands was diminished. Furthermore, in GolabiIto-Hall-derived lymphoblasts we showed that the complex between PQBP1-Y65C and WBP11 (WW domain-binding protein 11) splicing factor was compromised. In these cells a substantial decrease in pre-mRNA splicing efficiency was detected. Our study points to the critical role of the WW domain in the function of the PQBP1 protein and provides an insight into the molecular mechanism that underlies the X chromosome-linked mental retardation entities classified globally as Renpenning syndrome.
The cochaperone BAG3 is a central protein homeostasis factor in mechanically strained mammalian cells. It mediates the degradation of unfolded and damaged forms of the actin-crosslinker filamin through chaperone-assisted selective autophagy (CASA). In addition, BAG3 stimulates filamin transcription in order to compensate autophagic disposal and to maintain the actin cytoskeleton under strain. Here we demonstrate that BAG3 coordinates protein synthesis and autophagy through spatial regulation of the mammalian target of rapamycin complex 1 (mTORC1). The cochaperone utilizes its WW domain to contact a proline-rich motif in the tuberous sclerosis protein TSC1 that functions as an mTORC1 inhibitor in association with TSC2. Interaction with BAG3 results in a recruitment of TSC complexes to actin stress fibers, where the complexes act on a subpopulation of mTOR-positive vesicles associated with the cytoskeleton. Local inhibition of mTORC1 is essential to initiate autophagy at sites of filamin unfolding and damage. At the same time, BAG3-mediated sequestration of TSC1/TSC2 relieves mTORC1 inhibition in the remaining cytoplasm, which stimulates protein translation. In human muscle, an exercise-induced association of TSC1 with the cytoskeleton coincides with mTORC1 activation in the cytoplasm. The spatial regulation of mTORC1 exerted by BAG3 apparently provides the basis for a simultaneous induction of autophagy and protein synthesis to maintain the proteome under mechanical strain.
Synthetic peptide array technology was first developed in the early 1990s by Ronald Frank. Since then the technique has become a powerful tool for high throughput approaches in biology and biochemistry. Here, we focus on peptide arrays applied to investigate the binding specificity of protein interaction domains such as WW, SH3, and PDZ domains. We describe array‐based methods used to reveal domain networks in yeast, and briefly review rules as well as ideas about the synthesis and application of peptide arrays. We also provide initial results of a study designed to investigate the nature and evolution of SH3 domain interaction networks in eukaryotes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.