In this paper we establish a global fast dynamics for a class,of equations that include the beam equations as studied by Ball and von Karman equations for a thin plate. W e introduce various energy functionals and show that they decay exponentially. Using the absorbing sets obtained through these energy functionals, .we expose Hale's theory of 0-contractions and how it applies to this general framework and deduce the existence of a compact attractor, in parallel to his proof. We also establish the smoothness of this attractor when the damping is large. Finally, by proving the discrete squeezing property for these equations, the existence of a compact, finite dimensional exponentially attracting set is demonstrated. The use of energy methods throughout allow considerable simplification even when a natural Lyapunov functional is hard to exhibit. In closing, we also exhibit a simple alternative proof for Titi's theorem on the existence of inertial manifolds for beam equations under suitable forces.
We consider the singular perturbations of two boundary value problems, concerning respectively the viscous and the nonviscous Cahn-Hilliard equations in one dimension of space. We show that the dynamical systems generated by these two problems admit global attractors in the phase space H 1 0 (0, ) × H −1 (0, ), and that these global attractors are at least upper-semicontinuous with respect to the vanishing of the perturbation parameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.