Engineering simulators used for steady-state multiphase flows in oil and gas wells and pipelines are commonly utilized to predict pressure drop and phase velocities. Such simulators are typically based on either empirical correlations (e.g., Beggs and Brill, Mukherjee and Brill, Duns and Ros) or first-principles mechanistic models (e.g., Ansari, Xiao, TUFFP Unified, Leda Flow Point model, OLGAS). The simulators allow one to evaluate the pressure drop in a multiphase pipe flow with acceptable accuracy. However, the only shortcoming of these correlations and mechanistic models is their applicability (besides steady-state versions of transient simulators such as Leda Flow and OLGA). Empirical correlations are commonly applicable in their respective ranges of data fitting; and mechanistic models are limited by the applicability of the empirically based closure relations that are a part of such models. In order to extend the applicability and the accuracy of the existing accessible methods, a method of pressure drop calculation in the pipeline is proposed. The method is based on well segmentation and calculation of the pressure gradient in each segment using three surrogate models based on Machine Learning (ML) algorithms trained on a representative lab data set from the open literature. The first model predicts the value of a liquid holdup in the segment, the second one determines the flow pattern, and the third one is used to estimate the pressure gradient. To build these models, several ML algorithms are trained such as Random Forest, Gradient Boosting Decision Trees, Support Vector Machine, and Artificial Neural Network, and their predictive abilities are cross-compared. The proposed method for pressure gradient calculation yields R 2 = 0.95 by using the Gradient Boosting algorithm as compared with R 2 = 0.92 in case of Mukherjee and Brill correlation and R 2 = 0.91 when a combination of Ansari and Xiao mechanistic models is utilized. The application of the above-mentioned ML algorithms and the larger database used for their training will allow extending the proposed methodology to a wider applicability range of input parameters as compared to standard accessible techniques. The method for pressure drop prediction based on ML algorithms trained on lab data is also validated on three real field cases. Validation indicates that the proposed model yields the following coefficients of determination: R 2 = 0.806, 0.815 and 0.99 as compared with the highest values obtained by commonly used techniques: R 2 = 0.82 (Beggs and Brill correlation), R 2 = 0.823 (Mukherjee and Brill correlation) and R 2 = 0.98 (Beggs and Brill correlation). Hence, the method for calculating the pressure distribution could give comparable or even higher scores on field data by contrast to correlations and mechanistic models. This fact is an indicator that the model can be scalable from the lab to the field conditions without any additional retraining of ML algorithms.
Growing amount of fracturing stimulation jobs in the recent two decades resulted in a significant amount of measured data available for construction of predictive models via machine learning (ML). Simultaneous evolution of machine learning has made it possible to apply algorithms on the hydraulic fracture database. A typical multistage fracturing job on a near-horizontal well today involves a significant number of stages. The post-fracturing production analysis (e.g., from production logging tools) reveals evidence that different stages produce very non-uniformly, and up to 30% may not be producing at all due to a combination of geomechanics and fracturing design factors. Hence, there is a significant room for fracturing design optimization, and the wealthy of field data combined with ML techniques opens a new road for solving this optimization problem. However, ML algorithms are only applicable when there is a comprehensive, well structured digital database. This paper summarizes the efforts into the creation of a digital database of field data from several thousands of multistage hydraulic fracturing jobs on near-horizontal wells from several different oilfields in Western Siberia, Russia. In terms of the number of points (fracturing jobs), the present database is a rare case of an outstandingly representative dataset of thousands of cases, compared to typical databases available in the literature, comprising tens or hundreds of pints at best. The focus is made on data gathering from various sources, data preprocessing and development of the architecture of a database as well as solving fracture design optimization via ML. We work with the database composed from reservoir properties, fracturing designs and production data. Both forward problem (prediction of production rate from fracturing design parameters) and inverse problem (selecting an optimum set of frac design parameters to maximize production) are considered. A recommendation system is designed for advising a DESC engineer on an optimized fracturing design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.