Listeria monocytogenes is a facultative intracellular bacterial pathogen that escapes from a phagosome and grows in the host cell cytosol. The pore-forming cholesterol-dependent cytolysin, listeriolysin O (LLO), mediates bacterial escape from vesicles and is ∼10-fold more active at an acidic than neutral pH. By swapping dissimilar residues from a pH-insensitive orthologue, perfringolysin O (PFO), we identified leucine 461 as unique to pathogenic Listeria and responsible for the acidic pH optimum of LLO. Conversion of leucine 461 to the threonine present in PFO increased the hemolytic activity of LLO almost 10-fold at a neutral pH. L. monocytogenes synthesizing LLO L461T, expressed from its endogenous site on the bacterial chromosome, resulted in a 100-fold virulence defect in the mouse listeriosis model. These bacteria escaped from acidic phagosomes and initially grew normally in cells and spread cell to cell, but prematurely permeabilized the host membrane and killed the cell. These data show that the acidic pH optimum of LLO results from an adaptive mutation that acts to limit cytolytic activity to acidic vesicles and prevent damage in the host cytosol, a strategy also used by host cells to compartmentalize lysosomal hydrolases.
Laparoscopic appendectomy is superior or comparable to open appendectomy in terms of several surgical outcome measures for both uncomplicated and complicated appendicitis, across most illness severity groups. Thus, laparoscopic appendectomy may be the preferred technique, irrespective of appendicitis diagnosis or disease severity.
Listeria monocytogenes (Lm) evades being killed after phagocytosis by macrophages by escaping from vacuoles into cytoplasm. Activated macrophages are listericidal, in part because they can retain Lm in vacuoles. This study examined the contribution of reactive oxygen intermediates (ROI) and reactive nitrogen intermediates (RNI) to the inhibition of Lm escape from vacuoles. Lm escaped from vacuoles of nonactivated macrophages within 30 min of infection. Macrophages activated with IFN-γ, LPS, IL-6, and a neutralizing Ab against IL-10 retained Lm within the vacuoles, and inhibitors of ROI and RNI blocked inhibition of vacuolar escape to varying degrees. Measurements of Lm escape in macrophages from gp91phox−/− and NO synthase 2−/− mice showed that vacuolar retention required ROI and was augmented by RNI. Live cell imaging with the fluorogenic probe dihydro-2′,4,5,6,7,7′-hexafluorofluorescein coupled to BSA (DHFF-BSA) indicated that oxidative chemistries were generated rapidly and were localized to Lm vacuoles. Chemistries that oxidized DHFF-BSA were similar to those that retained Lm in phagosomes. Fluorescent conversion of DHFF-BSA occurred more efficiently in smaller vacuoles, indicating that higher concentrations of ROI or RNI were generated in more confining volumes. Thus, activated macrophages retained Lm within phagosomes by the localization of ROI and RNI to vacuoles, and by their combined actions in a small space
Ratiometric and lifetime-based sensors have been designed for cellular detection of nitric oxide. These sensors incorporate cytochrome c', a hemoprotein known to bind nitric oxide selectively. The cytochrome c' is labeled with a fluorescent reporter dye, and changes in this dye's intensity or fluorescence lifetime are observed as the protein binds nitric oxide. The ratiometric sensors are composed of dye-labeled cytochrome c' attached to the optical fiber via colloidal gold, along with fluorescent microspheres as intensity standards. These ratiometric sensors exhibit linear response, have fast response times (< or = 0.25 s), and are completely reversible. The sensors are selective over numerous common interferents such as nitrite, nitrate, and oxygen species, and the limit of detection is 8 microM nitric oxide. The lifetime-based measurements are made using free, dye-labeled cytochrome c' in solution and have a limit of detection of 30 microM nitric oxide. The use of these two techniques has allowed measurement of intra- and extracellular macrophage nitric oxide. Employing the ratiometric fiber sensors gave a multicell culture average extracellular nitric oxide concentration of 210 +/- 90 microM for activated macrophages, while an average intracellular concentration of 160 +/- 10 microM was determined from the lifetime-based measurements of dye-labeled cytochrome c' in the macrophage cytosol. Microscopic adaptation of the lifetime-based methods described here would allow direct correlation of intracellular nitric oxide levels with specific cellular activities, such as phagocytosis.
This study demonstrated the superiority of laparoscopy over conventional open surgery across all illness severity risk groups for common surgical procedures. The results in general show that laparoscopic surgery is safe, efficacious, and cost-effective compared with open surgery and suggest that laparoscopic surgery should be the procedure of choice for all common surgical procedures, regardless of illness severity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.