A desirable property of autonomous agents is the ability to both solve long-horizon problems and generalize to unseen tasks. Recent advances in data-driven skill learning have shown that extracting behavioral priors from offline data can enable agents to solve challenging long-horizon tasks with reinforcement learning. However, generalization to tasks unseen during behavioral prior training remains an outstanding challenge. To this end, we present Few-shot Imitation with Skill Transition Models (FIST), an algorithm that extracts skills from offline data and utilizes them to generalize to unseen tasks given a few downstream demonstrations. FIST learns an inverse skill dynamics model, a distance function, and utilizes a semi-parametric approach for imitation. We show that FIST is capable of generalizing to new tasks and substantially outperforms prior baselines in navigation experiments requiring traversing unseen parts of a large maze and 7-DoF robotic arm experiments requiring manipulating previously unseen objects in a kitchen.Preprint. Under review.
Deep Reinforcement Learning (RL) has emerged as a powerful paradigm to solve a range of complex yet specific control tasks. Yet training generalist agents that can quickly adapt to new tasks remains an outstanding challenge. Recent advances in unsupervised RL have shown that pre-training RL agents with self-supervised intrinsic rewards can result in efficient adaptation. However, these algorithms have been hard to compare and develop due to the lack of a unified benchmark. To this end, we introduce the Unsupervised Reinforcement Learning Benchmark (URLB). URLB consists of two phases: reward-free pre-training and downstream task adaptation with extrinsic rewards. Building on the DeepMind Control Suite, we provide twelve continuous control tasks from three domains for evaluation and open-source code for eight leading unsupervised RL methods. We find that the implemented baselines make progress but are not able to solve URLB and propose directions for future research. Code for the benchmark and implemented baselines can be accessed at https://github.com/rll-research/url_benchmark. * equal contribution, order determined by coin flip.35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks.
Imitation learning can reproduce policies by observing experts, which poses a problem regarding policy privacy. Policies, such as human, or policies on deployed robots, can all be cloned without consent from the owners. How can we protect against external observers cloning our proprietary policies? To answer this question we introduce a new reinforcement learning framework, where we train an ensemble of near-optimal policies, whose demonstrations are guaranteed to be useless for an external observer. We formulate this idea by a constrained optimization problem, where the objective is to improve proprietary policies, and at the same time deteriorate the virtual policy of an eventual external observer. We design a tractable algorithm to solve this new optimization problem by modifying the standard policy gradient algorithm. Our formulation can be interpreted in lenses of confidentiality and adversarial behaviour, which enables a broader perspective of this work. We demonstrate the existence of "non-clonable" ensembles, providing a solution to the above optimization problem, which is calculated by our modified policy gradient algorithm. To our knowledge, this is the first work regarding the protection of policies in Reinforcement Learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.