The aim of this review is to analyze and to summarize the state of the art of the processing of aluminum alloys, and in particular of the AlSi10Mg alloy, obtained by means of the Additive Manufacturing (AM) technique known as Selective Laser Melting (SLM). This process is gaining interest worldwide, thanks to the possibility of obtaining a freeform fabrication coupled with high mechanical properties related to a very fine microstructure. However, SLM is very complex, from a physical point of view, due to the interaction between a concentrated laser source and metallic powders, and to the extremely rapid melting and the subsequent fast solidification. The effects of the main process variables on the properties of the final parts are analyzed in this review: from the starting powder properties, such as shape and powder size distribution, to the main process parameters, such as laser power and speed, layer thickness, and scanning strategy. Furthermore, a detailed overview on the microstructure of the AlSi10Mg material, with the related tensile and fatigue properties of the final SLM parts, in some cases after different heat treatments, is presented.
The mechanical properties and biocompatibility of titanium alloy medical devices and implants produced by additive manufacturing (AM) technologies - in particular, selective laser melting (SLM), electron beam melting (EBM) and laser metal deposition (LMD) - have been investigated by several researchers demonstrating how these innovative processes are able to fulfil medical requirements for clinical applications. This work reviews the advantages given by these technologies, which include the possibility to create porous complex structures to improve osseointegration and mechanical properties (best match with the modulus of elasticity of local bone), to lower processing costs, to produce custom-made implants according to the data for the patient acquired via computed tomography and to reduce waste.
In the circular economy, products, components, and materials are aimed to be kept at the utility and value all the lifetime. For this purpose, repair and remanufacturing are highly considered as proper techniques to return the value of the product during its life. Directed Energy Deposition (DED) is a very flexible type of additive manufacturing (AM), and among the AM techniques, it is most suitable for repairing and remanufacturing automotive and aerospace components. Its application allows damaged component to be repaired, and material lost in service to be replaced to restore the part to its original shape. In the past, tungsten inert gas welding was used as the main repair method. However, its heat affected zone is larger, and the quality is inferior. In comparison with the conventional welding processes, repair via DED has more advantages, including lower heat input, warpage and distortion, higher cooling rate, lower dilution rate, excellent metallurgical bonding between the deposited layers, high precision, and suitability for full automation. Hence, the proposed repairing method based on DED appears to be a capable method of repairing. Therefore, the focus of this study was to present an overview of the DED process and its role in the repairing of metallic components. The outcomes of this study confirm the significant capability of DED process as a repair and remanufacturing technology.
Directed energy deposition (DED) as a metal additive manufacturing technology can be used to produce or repair complex shape parts in a layer-wise process using powder or wire. Thanks to its advantages in the fabrication of net-shape and functionally graded components, DED could attract significant interest in the production of high-value parts for different engineering applications. Nevertheless, the industrialization of this technology remains challenging, mainly because of the lack of knowledge regarding the microstructure and mechanical characteristics of as-built parts, as well as the trustworthiness/durability of engineering parts produced by the DED process. Hence, this paper reviews the published data about the microstructure and mechanical performance of DED AISI 316L stainless steel. The data show that building conditions play key roles in the determination of the microstructure and mechanical characteristics of the final components produced via DED. Moreover, this review article sheds light on the major advancements and challenges in the production of AISI 316L parts by the DED process. In addition, it is found that in spite of different investigations carried out on the optimization of process parameters, further research efforts into the production of AISI 316L components via DED technology is required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.