Biofuels from algae are highly interesting as renewable energy sources to replace, at least partially, fossil fuels, but great research efforts are still needed to optimize growth parameters to develop competitive large-scale cultivation systems. One factor with a seminal influence on productivity is light availability. Light energy fully supports algal growth, but it leads to oxidative stress if illumination is in excess. In this work, the influence of light intensity on the growth and lipid productivity of Nannochloropsis salina was investigated in a flat-bed photobioreactor designed to minimize cells self-shading. The influence of various light intensities was studied with both continuous illumination and alternation of light and dark cycles at various frequencies, which mimic illumination variations in a photobioreactor due to mixing. Results show that Nannochloropsis can efficiently exploit even very intense light, provided that dark cycles occur to allow for re-oxidation of the electron transporters of the photosynthetic apparatus. If alternation of light and dark is not optimal, algae undergo radiation damage and photosynthetic productivity is greatly reduced. Our results demonstrate that, in a photobioreactor for the cultivation of algae, optimizing mixing is essential in order to ensure that the algae exploit light energy efficiently.
The use of CO(2) under pressure (dense CO(2)) is one of the most promising techniques to achieve cold pasteurization and/or sterilization of liquid and solid materials, and is likely to replace or partially substitute currently and widely applied thermal processes. Although the ability of CO(2) to inactivate microorganisms has been known since the 1950's, only within the last 15 years it has received special attention, and the scientific and economic interest towards practical applications is presently growing more and more. Here we collect and discuss the relevant current knowledge about the potentials of dense CO(2) as a non-thermal technology in the field of microbial inactivation. We summarize the state of the art, including definitions, description of the equipment, relevant applications, in both simple suspensions and complex media, for the treatment of a wide range of microorganisms in both liquid and solid substrates. Finally, we also summarize and discuss the different hypotheses about the mechanisms of inactivation.
One of the main parameters influencing microalgae production is light, which provides energy to support metabolism but, if present in excess, can lead to oxidative stress and growth inhibition. In this work, the influence of illumination on Scenedesmus obliquus growth was assessed by cultivating cells at different light intensities in a flat plate photobioreactor. S. obliquus showed a maximum growth rate at 150 μmol photons m(-2) s(-1). Below this value, light was limiting for growth, while with more intense illumination photosaturation effects were observed, although cells still showed the ability to duplicate. Looking at the biochemical composition, light affected the pigment contents only while carbohydrate, lipid, and protein contents remained stable. By considering that in industrial photobioreactors microalgae cells are subjected to light-dark cycles due to mixing, algae were also grown under pulsed illumination (5, 10, and 15 Hz). Interestingly, the ability to exploit pulsed light with good efficiency required a pre-acclimation to the same conditions, suggesting the presence of a biological response to these conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.