Sex-dependent differences are frequently observed in the biological and behavioural effects of substances of abuse, including cannabis. We recently demonstrated a modulating effect of sex and oestrous cycle on cannabinoid-taking and seeking behaviours. Here, we investigated the influence of sex and oestrogen in the regulation of cannabinoid CB1 receptor density and function, measured by [(3)H]CP55940 and CP55940-stimulated [(35)S]GTPγS binding autoradiography, respectively, in the prefrontal cortex (Cg1 and Cg3), caudate- putamen, nucleus accumbens, amygdala and hippocampus of male and cycling female rats, as well as ovariectomised (OVX) rats and OVX rats primed with oestradiol (10 µg/rat) (OVX+E). CB1 receptor density was significantly lower in the prefrontal cortex and amygdala of cycling females than in males and in OVX females, a difference that appeared to be oestradiol-dependent, because it was no more evident in the OVX+E group. CP55940-stimulated [(35)S]GTPγS binding was significantly higher in the Cg3 of OVX rats relative to cycling and OVX+E rats. No difference was observed in CB1 receptor density or function in any of the other brain areas analysed. Finally, sex and oestradiol were also found to affect motor activity, social behaviour and sensorimotor gating in rats tested in locomotor activity boxes, social interaction and prepulse inhibition tasks, respectively. Our findings provide biochemical evidence for sex- and hormone- dependent differences in the density and function of CB1 receptors in selected brain regions, and in behaviours associated with greater vulnerability to drug addiction, revealing a more vulnerable behavioural phenotype in female than in male rats.
Summary The enzyme 5α-reductase (5αR) catalyzes the conversion of testosterone and other Δ4-3-ketosteroids into their 5α-reduced metabolites. Of the five members of the 5αR family the type 2 enzyme (5αR2) plays a key role in androgen metabolism, and is abundantly distributed in the urogenital system. Although 5αR2 has been reported to be highly expressed in the brain during early developmental stages, little is currently known on its anatomical and cellular distribution in the adult brain. Thus, the present study was designed to determine the detailed localization of 5αR2 in the adult rat brain, using a highly specific polyclonal antibody against this isoform. Parasagittal and coronal sections revealed 5αR2 immunoreactivity throughout most brain regions, with strong immunolabeling in the layers III and VI of the prefrontal and somatosensory cortex, olfactory bulb, thalamic nuclei, CA3 field of hippocampus, basolateral amygdala and Purkinje cell layer of cerebellum. Lower 5αR2 levels were detected in the hypothalamus and midbrain. Moreover, double labeling fluorescence with confocal laser scanning microscopy (CLSM) revealed that 5αR2 is localized in neurons, but not in glial cells. Specifically, the enzyme was documented in the pyramidal neurons of the cortex by CLSM analysis of simultaneous Golgi-Cox and immunofluorescent staining. Finally, low levels of 5αR2 expression were identified in GABAergic cells across the cortex, hippocampus and striatum. These findings show that, in the adult brain, 5αR2 is distributed in critical regions for behavioral regulation, suggesting that the functional role of this isoform is present throughout the entire lifespan of the individual.
The progressive predominance of rewarding effects of addictive drugs over their aversive properties likely contributes to the transition from drug use to drug dependence. By inhibiting the activity of DA neurons in the VTA, GABA projections from the rostromedial tegmental nucleus (RMTg) are well suited to shift the balance between drug-induced reward and aversion. Since cannabinoids suppress RMTg inputs to DA cells and CB1 receptors affect alcohol intake in rodents, we hypothesized that the endocannabinoid system, by modulating this pathway, might contribute to alcohol preference. Here we found that RMTg afferents onto VTA DA neurons express CB1 receptors and display a 2-arachidonoylglycerol (2-AG)-dependent form of short-term plasticity, that is, depolarization-induced suppression of inhibition (DSI). Next, we compared rodents with innate opposite alcohol preference, the Sardinian alcohol-preferring (sP) and alcohol-nonpreferring (sNP) rats. We found that DA cells from alcohol-naive sP rats displayed a decreased probability of GABA release and a larger DSI. This difference was due to the rate of 2-AG degradation. In vivo, we found a reduced RMTg-induced inhibition of putative DA neurons in sP rats that negatively correlated with an increased firing. Finally, alcohol failed to enhance RMTg spontaneous activity and to prolong RMTg-induced silencing of putative DA neurons in sP rats. Our results indicate functional modifications of RMTg projections to DA neurons that might impact the reward/aversion balance of alcohol attributes, which may contribute to the innate preference observed in sP rats and to their elevated alcohol intake.
Although substantial evidence has shown interactions between glutamatergic and dopaminergic systems play a cardinal role in the regulation of attentional processes, their involvement in informational filtering has been poorly investigated. Chiefly, little research has focused on functional correlations between the dopaminergic system and the mechanism of action of N-methyl-D-aspartate (NMDA) receptor antagonists on sensorimotor gating. The present study was targeted at evaluating whether the activation of D 1 and D 2 receptors is able to interact with the disruption of prepulse inhibition (PPI) of startle mediated by dizocilpine, a selective, noncompetitive NMDA receptor antagonist. We tested the effects of SKF 38393 ((7)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol) (10 mg/kg, s.c.), a selective D 1 agonist, and quinpirole (0.3, 0.6 mg/kg, s.c.), a D 2 agonist, in rats, per se and in cotreatment with different doses of dizocilpine, ranging from 0.0015 to 0.15 mg/kg (s.c.). Subsequently, the effect of the D 1 antagonist SCH 23390 ((R)-( þ )-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine) (0.05, 0.1 mg/kg, s.c.) on PPI disruptions mediated by dizocilpine and by combination of dizocilpine and SKF 38393 was tested. Two further experiments were performed to verify whether the synergic effect of the D 1 agonist with dizocilpine was counteracted by effective doses of haloperidol (0.1, 0.5 mg/kg, i.p.) and clozapine (5, 10 mg/kg, i.p.). All experiments were carried out using standard procedures for the assessment of PPI of the acoustic startle reflex. SKF 38393, while unable to impair sensorimotor gating alone, induced PPI disruption in cotreatment with 0.05 and 0.15 mg/kg of dizocilpine, both ineffective per se. Furthermore, this effect was reversed by SCH 23390, but not by haloperidol or clozapine. Conversely, no synergistic effect was exhibited between quinpirole and dizocilpine, at any given dose. These findings suggest that D 1 , but not D 2 receptors, enhance the disruptive effect of dizocilpine on PPI.
Two recently reported hit compounds, COR627 and COR628, underpinned the development of a series of 2-(acylamino)thiophene derivatives. Some of these compounds displayed significant activity in vitro as positive allosteric modulators of the GABAB receptor by potentiating GTPγS stimulation induced by GABA at 2.5 and 25 μM while failing to exhibit intrinsic agonist activity. Compounds were also found to be effective in vivo, potentiating baclofen-induced sedation/hypnosis in DBA mice when administered either intraperitoneally or intragastrically. Although displaying a lower potency in vitro than the reference compound GS39783, the new compounds 6, 10, and 11 exhibited a higher efficacy in vivo: combination of these compounds with a per se nonsedative dose of baclofen resulted in shorter onset and longer duration of the loss of righting reflex in mice. Test compounds showed cytotoxic effects at concentrations comparable to or higher than those of GS39783 or BHF177.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.