The use of collision cross-section (CCS) values obtained by ion mobility high-resolution mass spectrometry has added a third dimension (alongside retention time and exact mass) to aid in the identification of compounds. However, its utility is limited by the number of experimental CCS values currently available. This work demonstrates the potential of artificial neural networks (ANNs) for the prediction of CCS values of pesticides. The predictor, based on eight software-chosen molecular descriptors, was optimized using CCS values of 205 small molecules and validated using a set of 131 pesticides. The relative error was within 6% for 95% of all CCS values for protonated molecules, resulting in a median relative error less than 2%. In order to demonstrate the potential of CCS prediction, the strategy was applied to spinach samples. It notably improved the confidence in the tentative identification of suspect and nontarget pesticides.
Currently, the most powerful approach to monitor organic micropollutants (OMPs) in environmental samples is the combination of target, suspect, and nontarget screening strategies using high-resolution mass spectrometry (HRMS). However, the high complexity of sample matrices and the huge number of OMPs potentially present in samples at low concentrations pose an analytical challenge. Ion mobility separation (IMS) combined with HRMS instruments (IMS–HRMS) introduces an additional analytical dimension, providing extra information, which facilitates the identification of OMPs. The collision cross-section (CCS) value provided by IMS is unaffected by the matrix or chromatographic separation. Consequently, the creation of CCS databases and the inclusion of ion mobility within identification criteria are of high interest for an enhanced and robust screening strategy. In this work, a CCS library for IMS–HRMS, which is online and freely available, was developed for 556 OMPs in both positive and negative ionization modes using electrospray ionization. The inclusion of ion mobility data in widely adopted confidence levels for identification in environmental reporting is discussed. Illustrative examples of OMPs found in environmental samples are presented to highlight the potential of IMS–HRMS and to demonstrate the additional value of CCS data in various screening strategies.
Parent and modified mycotoxin analysis remains a challenge because of their chemical diversity, the presence of isomeric forms, and the lack of analytical standards. The creation and application of a collision cross section (CCS) database for mycotoxins may bring new opportunities to overcome these analytical challenges. However, it is still an open question whether common CCS databases can be used independently from the instrument type and ion mobility mass spectrometry (IM-MS) technologies, which utilize different methodologies for determining the gas-phase mobility. Here, we demonstrated the reproducibility of CCS measurements for mycotoxins in an interlaboratory study (average RSD 0.14% ± 0.079) and across different traveling wave IM-MS (TWIMS) systems commercially available (ΔCCS% < 2). The separation in the drift time dimension of critical pairs of isomers for modified mycotoxins was also achieved. In addition, the comparison of measured and predicted CCS values, including regulated and emerging mycotoxins, was addressed.
Background The NORMAN Association (https://www.norman-network.com/) initiated the NORMAN Suspect List Exchange (NORMAN-SLE; https://www.norman-network.com/nds/SLE/) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for “suspect screening” lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide. Results The NORMAN-SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors around the world, totalling over 100,000 unique substances. The substance classes include per- and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the European REACH regulation (EC: 1272/2008), priority contaminants of emerging concern (CECs) and regulatory lists from NORMAN partners. Several lists focus on transformation products (TPs) and complex features detected in the environment with various levels of provenance and structural information. Each list is available for separate download. The merged, curated collection is also available as the NORMAN Substance Database (NORMAN SusDat). Both the NORMAN-SLE and NORMAN SusDat are integrated within the NORMAN Database System (NDS). The individual NORMAN-SLE lists receive digital object identifiers (DOIs) and traceable versioning via a Zenodo community (https://zenodo.org/communities/norman-sle), with a total of > 40,000 unique views, > 50,000 unique downloads and 40 citations (May 2022). NORMAN-SLE content is progressively integrated into large open chemical databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/) and the US EPA’s CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard/), enabling further access to these lists, along with the additional functionality and calculated properties these resources offer. PubChem has also integrated significant annotation content from the NORMAN-SLE, including a classification browser (https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101). Conclusions The NORMAN-SLE offers a specialized service for hosting suspect screening lists of relevance for the environmental community in an open, FAIR manner that allows integration with other major chemical resources. These efforts foster the exchange of information between scientists and regulators, supporting the paradigm shift to the “one substance, one assessment” approach. New submissions are welcome via the contacts provided on the NORMAN-SLE website (https://www.norman-network.com/nds/SLE/).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.