Both systems showed high reproducibility. Validation experiments on physical model eyes showed slightly higher accuracy with the Purkinje method than the Scheimpflug imaging method. Horizontal measurements of patients with both techniques were highly correlated. The IOLs tended to be tilted and decentered nasally in most patients.
We present an optimization method to retrieve the gradient index (GRIN) distribution of the in-vitro crystalline lens from optical path difference data extracted from OCT images. Three-dimensional OCT images of the crystalline lens are obtained in two orientations (with the anterior surface up and posterior surface up), allowing to obtain the lens geometry. The GRIN reconstruction method is based on a genetic algorithm that searches for the parameters of a 4-variable GRIN model that best fits the distorted posterior surface of the lens. Computer simulations showed that, for noise of 5 μm in the surface elevations, the GRIN is recovered with an accuracy of 0.003 and 0.010 in the refractive indices of the nucleus and surface of the lens, respectively. The method was applied to retrieve three-dimensionally the GRIN of a porcine crystalline lens in vitro. We found a refractive index ranging from 1.362 in the surface to 1.443 in the nucleus of the lens, an axial exponential decay of the GRIN profile of 2.62 and a meridional exponential decay ranging from 3.56 to 5.18. The effect of GRIN on the aberrations of the lens also studied. The estimated spherical aberration of the measured porcine lens was 2.87 μm assuming a homogenous equivalent refractive index, and the presence of GRIN shifted the spherical aberration toward negative values (-0.97 μm), for a 6-mm pupil.
Abstract. 1. A thorough inventory of a Mediterranean oak forest spider fauna carried out during 2 weeks is presented. It used a semi-quantitative sampling protocol to collect comparable data in a rigorous, rapid and efficient way. Four hundred and eighty samples of one person-hour of work each were collected, mostly inside a delimited 1-ha plot.2. Sampling yielded 10 808 adult spiders representing 204 species. The number of species present at the site was estimated using five different richness estimators (Chao1, Chao2, Jackknife1, Jackknife2 and Michaelis-Menten). The estimates ranged from 232 to 260. The most reliable estimates were provided by the Chao estimators and the least reliable was obtained with the Michaelis-Menten. However, the behavior of the Michaelis-Menten accumulation curves supports the use of this estimator as a stopping or reliability rule.3. Nineteen per cent of the species were represented by a single specimen (singletons) and 12% by just two specimens (doubletons). The presence of locally rare species in this exhaustive inventory is discussed.4. The effects of day, time of day, collector experience and sampling method on the number of adults, number of species and taxonomic composition of the samples are assessed. Sampling method is the single most important factor influencing the results and all methods generate unique species. Time of day is also important, in such way that each combination of method and time of day may be considered as a different method in itself. There are insignificant differences between the collectors in terms of species and number of adult spiders collected. Despite the high collecting effort, the species richness and abundance of spiders remained constant throughout the sampling period.
A spatial shift between channels in a dual-beam raster scan imaging system introduces a temporal separation between images from the two channels that can be much shorter than the frame rate of the system. The technique is demonstrated by measuring the velocity of erythrocytes in the retinal capillaries. We used an Adaptive Optics Scanning Laser Ophthalmoscope and introduced a temporal separation between imaging channels of 4.7 ms. We imaged three subjects and measured changing capillary blood flow velocity at the pulse rate. Since the time shift between channels is easily and continuously adjustable, this method can be used to measure rapidly changing events in any raster scan system with little added complexity. © 2015 Optical Society of America
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.