Both systems showed high reproducibility. Validation experiments on physical model eyes showed slightly higher accuracy with the Purkinje method than the Scheimpflug imaging method. Horizontal measurements of patients with both techniques were highly correlated. The IOLs tended to be tilted and decentered nasally in most patients.
We present a comparison between measurements of the radius of the anterior and posterior lens surface, which was performed using corrected Scheimpflug imaging and Purkinje imaging in the same group of participants (46 for the anterior lens, and 34 for the posterior lens). Comparisons were also made as a function of accommodation (0 to 7 D) in a subset of 11 eyes. Data were captured and processed using laboratory prototypes and custom processing algorithms [for optical and geometrical distortion correction in the Scheimpflug system and using either equivalent mirror (EM) or merit function (MF) methods for Purkinje]. We found statistically significant differences in 4 of 46 eyes for the anterior lens radius, and 10 of 34 eyes for the posterior radius (using the MF and individual biometric data to process the Purkinje images). For the anterior lens, the agreement increases using individual biometry as opposed to biometric data from a model eye. For the posterior lens, the agreement increases using the MF as opposed to the EM method. For the changes during accommodation, no significant difference between the two techniques was found. In conclusion, the results of the cross-validation using the Scheimpflug and Purkinje imaging technique show that both techniques provide comparable lens radii and similar changes with accommodation. Purkinje tends to overestimate posterior lens radius, whereas pupil size limits the acquisition of posterior lens data with the Scheimpflug camera. Computer simulations using the Scheimpflug data as input show that the consistent slight overestimation of the posterior lens radius using Purkinje imaging can be partly attributed to the asphericity of the lens surface.
We present a Purkinje imaging system for phakometry and measurement of tilt and decentration of crystalline and intraocular lenses (IOLs). Crystalline lens radii of curvature were estimated by using both a merit function and the equivalent mirror approaches. Tilts and decentrations were estimated by using Phillips's linear analysis. We present a complete validation of the technique through exhaustive computer simulations and control experiments, and measurements in 17 normal eyes (mean age 26.67 +/- 2.31) and nine postcataract surgery eyes (mean age 74 +/- 2.3). Crystalline lens radii ranged from 12.7 to 8.81 mm and from -5.64 to -7.09 mm for anterior and posterior surfaces, respectively. Crystalline lens tilt ranged from 2.8 to -2.87 deg horizontally and from 2.58 to -1 deg vertically. Crystalline lens decentration ranged from 0.09 to 0.45 mm horizontally and from 0.09 to -0.22 mm vertically. IOL tilt ranged from 3.6 to -1.51 deg horizontally and from 5.97 to -1.85 deg vertically. IOL decentration ranged from 0.53 to -0.31 mm horizontally and from 0.13 to -0.96 mm vertically.
We compared experimental wave aberrations in pseudophakic eyes with aspheric intraocular lenses (IOLs) to simulate aberrations from numerical ray tracing on customized computer eye models using corneal topography, angle lambda, ocular biometry, IOL geometry, and IOL tilt and decentration measured on the same eyes. We found high correlations between real and simulated aberrations even for the eye with only the cornea, and these increased on average when the IOL geometry and position were included. Relevant individual aberrations were well predicted by the complete eye model. Corneal spherical aberration and horizontal coma were compensated by the IOL, and in 58.3% of the cases IOL tilt and decentration contributed to compensation of horizontal coma. We conclude that customized computer eye models are a good representation of real eyes with IOLs and allow understanding of the relative contribution of optical, geometrical and surgically-related factors to image quality. Corneal spherical aberration is reduced by aspheric IOLs, although other corneal high order aberrations are still a major contributor to total aberrations in pseudophakic eyes. Tilt and decentration of the IOLs represent a relatively minor contribution of the overall optical quality of the eye.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.