Business Process Management is a new strategy for process management that is having a major impact today. Mainly, its use is focused on the industrial, services, and business sector. However, in recent years, it has begun to apply for optimizing clinical processes. So far, no studies that evaluate its true impact on the healthcare sector have been found. This systematic review aims to assess the results of the application of Business Process Management methodology on clinical processes, analyzing whether it can become a useful tool to improve the effectiveness and quality of processes. We conducted a systematic literature review using ScienceDirect, Web of Science, Scopus, PubMed, and Springer databases. After the electronic search process in different databases, 18 articles met the pre-established requirements. The findings support the use of Business Process Management as an effective methodology to optimize clinical processes. Business Process Management has proven to be a feasible and useful methodology to design and optimize clinical processes, as well as to automate tasks. However, a more comprehensive follow-up of this methodology, better technological support, and greater involvement of all the clinical staff are factors that play a key role for the development of its true potential.
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Highlights • Misclassification in ectopic pregnancies can involve major complications, causing even death. • We have developed a three-stage classifier to predict the most suitable treatment for ectopic pregnancies. • Our classifier has been tested for four different algorithms: a multilayer perceptron, a support vector machine, a deep learning algorithm and Naïves Bayes. • The best results were obtained with Support Vector Machine algorithm that presents accuracy, sensitivity and specity outcomes about 96,1%, 96% and 98%, respectively.. • The results prove that the evaluated algorithms Support Vector Machine and Multilayer Perceptron can be useful to help gynecologists in their decisions about initial treatment.
Microbial fuel cell (MFC) power performance strongly depends on the biofilm growth, which in turn is affected by the feed flow rate. In this work, an artificial neural network (ANN) approach has been used to simulate the effect of the flow rate on the power output by ceramic MFCs fed with neat human urine. To this aim, three different second-order algorithms were used to train our network and then compared in terms of prediction accuracy and convergence time: Quasi-Newton, Levenberg-Marquardt, and Conjugate Gradient. The results showed that the three training algorithms were able to accurately simulate power production. Amongst all of them, the Levenberg-Marquardt was the one that presented the highest accuracy (R = 95%) and the fastest convergence (7.8 s). These results show that ANNs are useful and reliable tools for predicting energy harvesting from ceramic-MFCs under changeable flow rate conditions, which will facilitate the practical deployment of this technology.
Background Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease with a high global prevalence. The main scientific societies dedicated to the management of this disease have published clinical practice guidelines for quality practice. However, at present, there are important weaknesses in COPD diagnosis criteria that often lead to underdiagnosis or misdiagnosis. Objective We sought to develop a new support system for COPD diagnosis. The system was designed to overcome the weaknesses detected in current guidelines with the goals of enabling early diagnosis, and improving the diagnostic accuracy and quality of care provided. Methods We first analyzed the main clinical guidelines for COPD to detect weaknesses that exist in the current diagnostic process, and then proposed a redesign based on a business process management (BPM) strategy for its optimization. The BPM system acts as a backbone throughout the process of COPD diagnosis in this proposed approach. The newly developed support system was integrated into a health information system for validation of its use in a hospital environment. The system was qualitatively evaluated by experts (n=12) and patients (n=36). Results Among the 12 experts, 10 (83%) positively evaluated our system with respect to increasing the speed for making the diagnosis, helping in interpreting results, and encouraging opportunistic diagnosis. With an overall rating of 4.29 on a 5-point scale, 27/36 (75%) of patients considered that the system was very useful in providing a warning about possible cases of COPD. The overall assessment of the system was 4.53 on a 5-point Likert scale with agreement to extend its use to all primary care centers. Conclusions The proposed system provides a functional method to overcome the weaknesses detected in the current diagnostic process for COPD, which can help foster early diagnosis, while improving the diagnostic accuracy and quality of care provided.
Please cite this article as: K. Munir, A. de Ramón-Fernández and S. Iqbal et al., Neuroscience patient identification using big data and fuzzy logic-An Alzheimer's disease case study, Expert Systems With Applications,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.