Caffeine is believed to act by blocking adenosine A1 and A2A receptors (A1R, A2AR), indicating that some A1 receptors are tonically activated. We generated mice with a targeted disruption of the second coding exon of the A1R (A1R ؊/؊ ). These animals bred and gained weight normally and had a normal heart rate, blood pressure, and body temperature. In most behavioral tests they were similar to A1R ؉/؉ mice, but A1R ؊/؊ mice showed signs of increased anxiety. Electrophysiological recordings from hippocampal slices revealed that both adenosine-mediated inhibition and theophylline-mediated augmentation of excitatory glutamatergic neurotransmission were abolished in A1R ؊/؊ mice. In A1R ؉/؊ mice the potency of adenosine was halved, as was the number of A1R. In A 1R؊/؊ mice, the analgesic effect of intrathecal adenosine was lost, and thermal hyperalgesia was observed, but the analgesic effect of morphine was intact. The decrease in neuronal activity upon hypoxia was reduced both in hippocampal slices and in brainstem, and functional recovery after hypoxia was attenuated. Thus A1Rs do not play an essential role during development, and although they significantly influence synaptic activity, they play a nonessential role in normal physiology. However, under pathophysiological conditions, including noxious stimulation and oxygen deficiency, they are important. A denosine acts on four cloned and pharmacologically characterized receptors, A 1 , A 2A , A 2B , and A 3 (1). Adenosine is believed to play a particularly important role in hypoxia and ischemia, and there is evidence that adenosine serves to limit damage secondary to ATP loss (2, 3). However, adenosine may have important actions under more normal physiological circumstances as well. For instance, the effects of caffeine, at concentrations reached during habitual caffeine consumption, are believed to be a consequence of blockade of tonic activity at some A 1 and A 2A receptors (A 1 R and A 2A R) (4). Studies on mice lacking A 2A Rs show that adenosine tonically activates A 2A Rs and that this activation has functional effects, particularly on behavior, blood pressure, and blood platelets (5). A 1 Rs are more widely distributed than A 2A Rs (4, 6), but despite extensive pharmacological studies their physiological and pathophysiological roles remain unclear. Here we show that A 1 Rs mediate physiological as well as pathophysiological effects of endogenous adenosine. In particular, adenosine acts tonically to activate presynaptic and postsynaptic A 1 Rs to depress synaptic transmission and to reduce nociceptive signaling. At elevated levels seen during hypoxia, adenosine acting at A 1 Rs is responsible for the depression of neuronal activity, and in this situation elimination of A 1 Rs results in impaired functional recovery. Materials and MethodsGeneration of A1R Knockout Mice. A major part of the proteincoding sequence of the mouse A 1 R gene (7) corresponding to exon 6 of the human A 1 R gene described by Ren and Stiles (8) was cloned. The targeting construct was b...
The selective breeding of Roman high-(RHA) and low-avoidance (RLA) rats for rapid vs extremely poor acquisition of active avoidance behavior in a shuttle-box has generated two phenotypes with different emotional and motivational profiles. The phenotypic traits of the Roman rat lines/strains (outbred or inbred, respectively) include differences in sensation/novelty seeking, anxiety/fearfulness, stress responsivity, and susceptibility to addictive substances. We designed this study to characterize differences between the inbred RHA-I and RLA-I strains in the impulsivity trait by evaluating different aspects of the multifaceted nature of impulsive behaviors using two different models of impulsivity, the delay-discounting task and five-choice serial reaction time (5-CSRT) task. Previously, rats were evaluated on a schedule-induced polydipsia (SIP) task that has been suggested as a model of obsessive-compulsive disorder. RHA-I rats showed an increased acquisition of the SIP task, higher choice impulsivity in the delay-discounting task, and poor inhibitory control as shown by increased premature responses in the 5-CSRT task. Therefore, RHA-I rats manifested an increased impulsivity phenotype compared with RLA-I rats. Moreover, these differences in impulsivity were associated with basal neurochemical differences in striatum and nucleus accumbens monoamines found between the two strains. These findings characterize the Roman rat strains as a valid model for studying the different aspects of impulsive behavior and for analyzing the mechanisms involved in individual predisposition to impulsivity and its related psychopathologies.
Behavioural assessment of mice lacking adenosine A1 receptors (A1Rs) showed reduced activity in some phases of the light-dark cycle, reduced exploratory behaviour in the open-field and in the hole-board, increased anxiety in the plus maze and dark-light box and increased aggressiveness in the resident-intruder test. No differences were found in spatial reference and working memory in several Morris water maze tasks. Both mutant mice had reduced muscle strength and survival rate. These results confirm the involvement of adenosine in motor activity, exploratory behaviour, anxiety and aggressiveness. A1Rs also appear to play a critical role in ageing-related deterioration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.