Rational application of pesticides by properly adjusting the amount of product to the actual needs and specific conditions for application is a key factor for sustainable plant protection. However, current plant protection product (PPP) labels registered for citrus in EU are usually expressed as concentration (%; rate/hl) and/or as the maximum dose of product per unit of ground surface, without taking into account those conditions. In this work, the fundamentals of a support tool, called CitrusVol, developed to recommend mix volume rates in PPP applications in citrus orchards using airblast sprayers, are presented. This tool takes into consideration crop characteristics (geometry, leaf area density), pests, and product and application efficiency, and it is based on scientific data obtained previously regarding the minimum deposit required to achieve maximum efficacy, efficiency of airblast sprayers in citrus orchards, and characterization of the crop. The use of this tool in several commercial orchards allowed a reduction of the volume rate and the PPPs used in comparison with the commonly used by farmers of between 11% and 74%, with an average of 31%, without affecting the efficacy. CitrusVol is freely available on a website and in an app for smartphones.
Pruning is one of the most manpower-consuming agricultural operations in citrus production. Mechanical pruning can help to reduce pruning time and costs. In order to obtain the knowledge of its effects on the important orange variety “Navel Foyos”, several pruning strategies that include manual pruning and various intensities of mechanical pruning were tested for three years. The results showed that in “Navel Foyos” oranges, the mechanical pruning strategies did not affect the yield nor the size of the fruit in comparison with manual pruning. In conclusion, mechanical strategies are a potential alternative to manual pruning because they reduce the time necessary to prune and the pruning costs, thereby maintaining or even increasing the yield.
Pesticides in three-dimensional (3D) crops are usually applied sidewise, so the vertical component must be considered for adjusting the applications. For this, different approaches have been proposed. Leaf Wall Area (LWA) was selected to express the minimum dose to be used in efficacy field trials for plant protection product (PPP) authorization in northern areas of Europe, where 3D crops are grown as narrow wall-forming structures. However, southern European areas also managed 3D crops as wide walls or globular crops with non-negligible canopy width. Therefore, a Tree Row Volume (TRV) model is thought to be more appropriate for dose expression. Furthermore, efficacy evaluations for pesticide authorization are usually carried out with manual sprayers in young plantations with medium-sized trees. However, growers normally apply PPP with air-blast sprayers in plantations of different tree sizes. The objective of this study was to determine which dose expression is more suitable in citrus orchards, as well as to analyze, in turn, the influence of the sprayer. The results demonstrated that TRV was the most appropriate for dose expression. Knapsacks and air-blast sprayers distributed the spray on the canopy in different ways, and the size of the vegetation influenced the differences between them. Moreover, knapsack sprayers produced higher ground losses, and air-blast sprayers produced higher potential drift.
The optimization of the water volume used to apply pesticides with airblast sprayers is key to reducing water footprint, costs, operational time and drift of pesticides. This study evaluated a new tool (CitrusVol) that adjusts the spray volume to the characteristics of the vegetation and the pesticide used to control the two-spotted spider mite Tetranychus urticae in clementine trees. This mite is one of the main citrus pests because it damages fruit before harvest. For this aim, a total of 20 applications against T. urticae were evaluated during two consecutive years in seven commercial orchards. In these orchards, we evaluated: (i) the distribution of the spray in tree canopies, (ii) pest density before and after the treatment, and (iii) fruit damage at harvest when conventional volumes and volumes adjusted with CitrusVol were applied. On average, CitrusVol reduced 36% the water volume used to control T. urticae in the 20 applications. This reduction in the spray volume involved a decrease in the coverage in some parts of the canopy. However, T. urticae density and fruit damage at harvest were similar in trees treated with the adjusted volume calculated with CitrusVol and the volume used by the owners of the orchard. Therefore, the spray volume recommended by CitrusVol is adequate to control T. urticae in clementines.
Aonidiella aurantii is one of the most damaging armored scales in citrus crops worldwide. To control this pest, high water volume rates are conventionally used. In order to rationalize the pesticide applications in citrus, IVIA developed CitrusVol, a tool that recommends the optimal volume rate based on the vegetation, the pest or disease and the active ingredient. In this study the objectives were: (i) validate CitrusVol as a tool to adjust the spray volume to control A. aurantii and (ii) quantify its environmental and economical advantages. For this, the spray volume adjusted with CitrusVol was compared with the one conventionally used by farmers in 18 applications in seven orchards during two years. The following parameters were evaluated: (i) spray distribution in the canopy, (ii) A. aurantii males trapped per day, and (iii) number of scales per fruit at harvest. CitrusVol reduced the spray volume and the amount of pesticide by 35% on average. Despite this reduction, a satisfactory spray distribution was achieved, and the volume was found to control the pest in a comparable way to the conventional volume. Moreover, CitrusVol saved per application and on average 31.25 h/100 ha of spray operating time, 241.83 L/100 ha of fuel consumption and consequently, the reduction of emissions of CO2 was 631.18 kg/100 ha. Therefore, CitrusVol allows for efficient, low-input and low-impact pesticide applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.