SUMMARYIn this paper we propose a design of the main modulation and demodulation units of a modem compliant with the new DVB-S2 standard (Int. J. Satellite Commun. 2004; 22:249-268). A typical satellite channel model consistent with the targeted applications of the aforementioned standard is assumed. In particular, non-linear pre-compensation as well as synchronization techniques are described in detail and their performance assessed by means of analysis and computer simulations. The proposed algorithms are shown to provide a good trade-off between complexity and performance and they apply to both the broadcast and the unicast profiles, the latter allowing the exploitation of adaptive coding and modulation (ACM) (Proceedings of the 20th AIAA Satellite Communication Systems Conference, Montreal, AIAA-paper 2002-1863, May 2002. Finally, end-to-end system performances in term of BER versus the signal-to-noise ratio are shown as a result of extensive computer simulations. The whole communication chain is modelled in these simulations, including the BCH and LDPC coder, the modulator with the pre-distortion techniques, the satellite transponder model with its typical impairments, the downlink chain inclusive of the RF-front-end phase noise, the demodulator with the synchronization sub-system units and finally the LDPC and BCH decoders.
SUMMARYThis paper describes an innovative receiver architecture for the satellite-based automatic identification system. The receiver performance has been fully validated in the presence of the typical satellite channel characteristics. In particular, it is shown that the devised receiver provides an excellent performance against the noise, as well as a large resilience against message collisions, Doppler shift, and delay spread.
SUMMARYMulti-user multiple-input multiple-output (MU-MIMO) has allowed recent releases of terrestrial long-term evolution (LTE) standards to achieve significant improvements in terms of offered system capacity. The publication of the DVB-S2X standard and particularly of its novel superframe structure is a key enabler for applying similar interference management techniques -such as precoding-to multibeam high throughput satellite (HTS) systems. This paper presents results from the European Space Agency-funded R&D activities concerning the practical issues that arise when precoding is applied over an aggressive frequency re-use HTS network. In addressing these issues, the paper also proposes pragmatic solutions that have been developed in order to overcome these limitations. Through the application of a comprehensive system simulator, it is demonstrated that important capacity gains (beyond 40%) are to be expected from applying precoding even after introducing a number of significant practical impairments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.