SUMMARYIn this paper we propose a design of the main modulation and demodulation units of a modem compliant with the new DVB-S2 standard (Int. J. Satellite Commun. 2004; 22:249-268). A typical satellite channel model consistent with the targeted applications of the aforementioned standard is assumed. In particular, non-linear pre-compensation as well as synchronization techniques are described in detail and their performance assessed by means of analysis and computer simulations. The proposed algorithms are shown to provide a good trade-off between complexity and performance and they apply to both the broadcast and the unicast profiles, the latter allowing the exploitation of adaptive coding and modulation (ACM) (Proceedings of the 20th AIAA Satellite Communication Systems Conference, Montreal, AIAA-paper 2002-1863, May 2002. Finally, end-to-end system performances in term of BER versus the signal-to-noise ratio are shown as a result of extensive computer simulations. The whole communication chain is modelled in these simulations, including the BCH and LDPC coder, the modulator with the pre-distortion techniques, the satellite transponder model with its typical impairments, the downlink chain inclusive of the RF-front-end phase noise, the demodulator with the synchronization sub-system units and finally the LDPC and BCH decoders.
The present article carries out a review of MIMObased techniques that have been recently proposed for satellite communications. Due to the plethora of MIMO interpretations in terrestrial systems and the particularities of satellite communications, this review is built on two pillars, namely fixed satellite and mobile satellite. Special attention is given to the characteristics of the satellite channel, which will ultimately determine the viability of MIMO over satellite. Finally, some future research directions are identified.
The work presented here describes the key design drivers and performance of a high efficiency satellite mobile messaging system well adapted to the machine-to-machine communication services targeting, in particular, the vehicular market. It is shown that the proposed return link multiple access solution is providing a random access channel (RACH) aggregated spectral efficiency around 2 bit/s/Hz in the presence of power unbalance with reliable packet delivery over typical land mobile satellite (LMS) channels.
Abstract-This paper investigates the performance of M -ary Amplitude-Phase Shift Keying (APSK) digital modulation over typical nonlinear satellite channels. The effect of the satellite nonlinearity is studied, and distortion pre-and post-compensation techniques for coded APSK are presented. Moreover, clock timing, signal amplitude and carrier phase recovery schemes are discussed. For the latter, a new class of non turbo decoder-aided closed-loop phase synchronizers featuring good performance and low complexity is studied. Finally, an end-to-end coded APSK system simulator inclusive of the satellite channel model and synchronization sub-systems is discussed and its performance compared to standard trellis-coded QAM concatenated with Reed-Solomon codes, showing a remarkable gain in both power and spectral efficiency. Coded APSK, recently selected for the new standard -DVB-S2-for digital video broadcasting and interactive broadband satellite services [1], is shown to represent a power-and spectral-efficient solution for satellite nonlinear channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.