Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration-temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. Analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates.temperature sensitivity | climate models | carbon exchange | Q 10 | thermal response P lant respiration provides continuous metabolic support for growth and maintenance of all tissues and contributes ∼60 Pg C y −1 to the atmosphere (1, 2), with ∼50% of the carbon (C) released by whole-plant respiration from leaves (3). As rates of leaf respiration (R) vary substantially with changes in temperature (T) (4, 5), even slight increases in ambient T can lead to increases in the flux of carbon dioxide (CO 2 ) from leaves to the atmosphere. This has the potential to create concomitant decreases in net primary productivity, and affect the implications of fossil fuel burning by contributing additionally to atmospheric CO 2 levels due to any imposed surface-level global warming. Hence, quantification of the T response of leaf R, and how this response may vary across diverse ecosystems and plant species, is critical to current estimations and future projections of the global carbon cycle (6-8). Evaluating how leaf R relates to T in terrestrial plants will clarify fundamental controls on energy metabolism and enable more accurate parameterization, as leaf R, in addition to photosynthesis (9, 10), has been identified as a major source of uncertainty in models of the global carbon cycle (8, 11). The response of leaf R to T differs in both ma...
Abstract. The dataset presented here consists of an ensemble of 10 global hydrological and land surface models for the period 1979–2012 using a reanalysis-based meteorological forcing dataset (0.5° resolution). The current dataset serves as a state of the art in current global hydrological modelling and as a benchmark for further improvements in the coming years. A signal-to-noise ratio analysis revealed low inter-model agreement over (i) snow-dominated regions and (ii) tropical rainforest and monsoon areas. The large uncertainty of precipitation in the tropics is not reflected in the ensemble runoff. Verification of the results against benchmark datasets for evapotranspiration, snow cover, snow water equivalent, soil moisture anomaly and total water storage anomaly using the tools from The International Land Model Benchmarking Project (ILAMB) showed overall useful model performance, while the ensemble mean generally outperformed the single model estimates. The results also show that there is currently no single best model for all variables and that model performance is spatially variable. In our unconstrained model runs the ensemble mean of total runoff into the ocean was 46 268 km3 yr−1 (334 kg m−2 yr−1), while the ensemble mean of total evaporation was 537 kg m−2 yr−1. All data are made available openly through a Water Cycle Integrator portal (WCI, wci.earth2observe.eu), and via a direct http and ftp download. The portal follows the protocols of the open geospatial consortium such as OPeNDAP, WCS and WMS. The DOI for the data is https://doi.org/10.1016/10.5281/zenodo.167070.
Abstract. It is hypothesized that more accurate prediction and warning of natural hazards, such as of the impacts of severe weather mediated through various components of the environment, require a more integrated Earth System approach to forecasting. This hypothesis can be explored using regional coupled prediction systems, in which the known interactions and feedbacks between different physical and biogeochemical components of the environment across sky, sea and land can be simulated. Such systems are becoming increasingly common research tools. This paper describes the development of the UKC2 regional coupled research system, which has been delivered under the UK Environmental Prediction Prototype project. This provides the first implementation of an atmosphere-land-ocean-wave modelling system focussed on the United Kingdom and surrounding seas at km-scale resolution. The UKC2 coupled system incorporates models of the atmosphere (Met Office Unified Model), land surface with river routing (JULES), shelf-sea ocean (NEMO) and ocean waves (WAVEWATCH III). These components are coupled, via OASIS3-MCT libraries, at unprecedentedly high resolution across the UK within a north-western European regional domain. A research framework has been established to explore the representation of feedback processes in coupled and uncoupled modes, providing a new research tool for UK environmental science. This paper documents the technical design and implementation of UKC2, along with the associated evaluation framework. An analysis of new results comparing the output of the coupled UKC2 system with relevant forced control simulations for six contrasting case studies of 5-day duration is presented. Results demonstrate that performance can be achieved with the UKC2 system that is at least comparable to its component control simulations. For some cases, improvements in air temperature, sea surface temperature, wind speed, significant wave height and mean wave period highlight the potential benefits of coupling between environmental model components. Results also illustrate that the coupling itself is not sufficient to address all known model issues. Priorities for future development of the UK Environmental Prediction framework and component systems are discussed.
Land-atmosphere exchanges influence atmospheric CO2. Emphasis has been on describing photosynthetic CO2 uptake, but less on respiration losses. New global datasets describe upper canopy dark respiration (R d) and temperature dependencies. This allows characterisation of baseline R d, instantaneous temperature responses and longer-term thermal acclimation effects. Here we show the global implications of these parameterisations with a global gridded land model. This model aggregates R d to whole-plant respiration R p, driven with meteorological forcings spanning uncertainty across climate change models. For pre-industrial estimates, new baseline R d increases R p and especially in the tropics. Compared to new baseline, revised instantaneous response decreases R p for mid-latitudes, while acclimation lowers this for the tropics with increases elsewhere. Under global warming, new R d estimates amplify modelled respiration increases, although partially lowered by acclimation. Future measurements will refine how R d aggregates to whole-plant respiration. Our analysis suggests R p could be around 30% higher than existing estimates.
Abstract. The dataset presented here consists of an ensemble of ten global hydrological and land surface models for the period 1979–2012 using a reanalysis-based meteorological forcing dataset (0.5° resolution). The current dataset serves as a state-of-the-art in current global hydrological modelling and as a benchmark for further improvements in the coming years. A signal-to-noise ratio analysis revealed low inter-model agreement over (i) snow-dominate regions and (ii) tropical rainforest and monsoon areas. The large uncertainty of precipitation in the tropics is not being reflected in the ensemble runoff. Verification of the results against benchmark datasets for evapotranspiration, snow cover, snow water equivalent, soil moisture anomaly and total water storage anomaly using the tools from The International Land Model Benchmarking Project (ILAMB) showed overall useful model performance, while the ensemble mean generally outperformed the single model estimates. The results also show that there is currently no single best model for all variables and that model performance is spatially variable. In our unconstrained model runs the ensemble mean of total runoff into the ocean was 46 268 km3/yr (334 kg/m2/yr) while the ensemble mean of total evaporation was 537 kg/m2/yr. All data are made available openly through a Water Cycle Integrator portal (WCI, wci.earth2observe.eu), and via a direct http and ftp download. The portal follows the protocols of the open geospatial consortium such as OPeNDAP, WCS and WMS. The doi for the data is: doi:10.5281/zenodo.167070
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.