These neurophysiological alterations following phenobarbital exposure provide a potential mechanism by which acute phenobarbital exposure can have a long-lasting impact on brain development and behavior.
A significant proportion of neonatal and childhood seizures are poorly controlled by existing antiseizure drugs (ASDs), likely due to prominent differences in ionic homeostasis and network connectivity between the immature and mature brain. In addition to the poor efficacy of current ASDs, many induce apoptosis, impair synaptic development, and produce behavioral deficits when given during early postnatal development. There is growing interest in new targets, such as cannabidiol (CBD) and its propyl analog cannabidivarin (CBDV) for early life indications. While CBD was recently approved for treatment of refractory childhood epilepsies, little is known about the efficacy or safety of CBDV. Here, we addressed this gap through a systematic evaluation of CBDV against multiple seizure models in postnatal day (P) 10 and 20 animals. We also evaluated the impact of CBDV on acute neurotoxicity in immature rats. CBDV (50-200 mg/kg) displayed an age and model-specific profile of anticonvulsant action. In P10 rats, CBDV suppressed seizures only in the pentylenetetrazole model. In P20 rats, CBDV suppressed seizures in the pentylenetetrazole, DMCM, and maximal electroshock models. Between P10 and P20, we identified significant increases in mRNA expression of TRPV1 in multiple brain regions; when CBDV was tested in P20 TRPV1 knockout mice, anticonvulsant effects were attenuated. Finally, CBDV treatment generally avoided induction of neuronal degeneration in immature rats. Together, the efficacy and safety profile of CBDV suggest it may have therapeutic value for early life seizures.
Dopamine (DA) is a potent neuromodulator known to influence glutamatergic transmission in striatal medium spiny neurons (MSNs). It acts on D1- and D2-like DA receptors that are expressed on two distinct subpopulations. MSNs projecting to the sub-stantia nigra express D1 receptors (D1Rs), while those projecting to the lateral globus pallidus express D2 receptors (D2Rs). D1R signalling in particular can increase excitatory transmission through varied protein kinase A-dependent, cell-autonomous pathways. Mechanisms by which D1R signalling could increase excitatory transmission in D2R-bearing MSNs have been relatively less explored. Herein, the possibility is considered that D1R agonists increase levels of soluble factors that subsequently influence N-methyl-D-aspartate (NMDA)-stimulated calcium flux in D2R neurons. This study focuses on matrix metalloproteinases (MMPs) and MMP-generated integrin binding ligands, important soluble effectors of glutamatergic transmission that may be elevated in the setting of excess DA. It was observed that DA and a D1R agonist, SKF81297, increase MMP activity in extracts from striatal slices, as determined by cleavage of the substrate β-dystroglycan. Using mice engineered to express the calcium indicator GCaMP3 in striatopallidal D2R-bearing neurons, it was also observed that SKF81297 pretreatment of slices (60 min) potentiates NMDA-stimulated calcium increases in this subpopulation. Effects are diminished by pretreatment with an antagonist of MMP activity or an inhibitor of integrin-dependent signalling. Together, results suggest that DA signalling can increase excitatory transmission in D2R neurons through an MMP-dependent mechanism. Future studies may be warranted to determine whether D1R-stimulated MMP-dependent processes contribute to behaviours in which increased activity in striatopallidal MSNs plays a role.
Neuroinflammation precedes neuronal loss in striatal neurodegenerative diseases and can be exacerbated by the release of proinflammatory molecules by microglia. These molecules can affect trafficking of AMPARs. The preferential trafficking of calcium-permeable versus impermeable AMPARs can result in disruptions of [Ca2+]i and alter cellular functions. In striatal neurodegenerative diseases, changes in [Ca2+]i and L-type voltage-gated calcium channels (VGCCs) have been reported. Therefore, the present study sought to determine whether a proinflammatory environment alters AMPA-stimulated [Ca2+]i through calcium-permeable AMPARs and/or L-type VGCCs in dopamine-2 and dopamine-1 expressing striatal spiny projection neurons (D2 and D1 SPNs) in the dorsal striatum. Mice expressing the calcium indicator protein, GCaMP in D2 or D1 SPNs, were utilized for calcium imaging. Microglial activation was assessed by morphology analyses. To induce inflammation, acute mouse striatal slices were incubated with lipopolysaccharide (LPS). Here we report that LPS treatment potentiated AMPA responses only in D2 SPNs. When a nonspecific VGCC blocker was included, we observed a decrease of AMPA-stimulated calcium fluorescence in D2 but not D1 SPNs. The remaining agonist induced [Ca2+]i was mediated by calcium-permeable AMPARs because the responses were completely blocked by a selective calcium-permeable AMPAR antagonist. We used isradipine, the highly selective L-type VGCC antagonist to determine the role of L-type VGCCs in SPNs treated with LPS. Isradipine decreased AMPA-stimulated responses selectively in D2 SPNs after LPS treatment. Our findings suggest that dorsal striatal D2 SPNs are specifically targeted in proinflammatory conditions and that L-type VGCCs and calcium-permeable AMPARs are important mediators of this effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.