A single Zr65Al7.5Ni10Pd17.5 bulk metallic glass exhibits a large plastic strain of 6.6% during the compressive deformation process, which is attributed to the deformation mode with nanoscale multistep shear bands. We have observed that nanocrystals with a metastable fcc Zr2Ni structure containing several distorted icosahedral clusters are arranged in a “bandlike” formation in the glassy matrix around the multistep shear bands. This is recognized as direct evidence of the novel phenomenon of the restraint of shear band propagation owing to the dynamic precipitation of the nanocrystals.
The mechanical properties of engineering materials are key for ensuring safety and reliability. However, the plastic deformation of BMGs is confined to narrow regions in shear bands, which usually result in limited ductilities and catastrophic failures at low homologous temperatures. The quasi-brittle failure and lack of tensile ductility undercut the potential applications of BMGs. In this report, we present clear tensile ductility in a Zr-based BMG via a high-pressure torsion (HPT) process. Enhanced tensile ductility and work-hardening behavior after the HPT process were investigated, focusing on the microstructure, particularly the changed free volume, which affects deformation mechanisms (i.e., initiation, propagation, and obstruction of shear bands). Our results provide insights into the basic functions of hydrostatic pressure and shear strain in the microstructure and mechanical properties of HPT-processed BMGs.
A 120-mm wide amorphous ribbon of a Fe-Co-Si-B-P-Cu NANOMET® alloy has been successfully produced by a single roll melt spinning technique. The optimally annealed samples exhibited low coercivity (Hc) of 5–7 A/m and high saturation magnetic flux density (Bs) of 1.83 T. The plots of Hc and Bs vs. annealing temperature (Ta) revealed basin-like and plateau-like characteristics, respectively, indicating the good annealing controllability for nanocrystallization and for obtaining soft-magnetic properties with high Bs. The excellent magnetic softness was attributed to the nanocrystalline structure composed of homogeneously dispersed α-Fe grains (with a size of 15–20 nm in diameter) emerged from the amorphous structure after optimum annealing. The nanocrystalline ribbons also exhibited low core-losses (W at 50 Hz) of 0.37 and 0.64 W/kg under maximum flux density of 1.5 T and 1.7 T, respectively. The magnetic properties were comparable with those of laboratory-scale small-width ribbons and confirmed to be independent on the ribbon width, indicating the good reproducibility of this NANOMET® alloy into mass-production-level precursors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.