BackgroundIn Sub-Saharan Africa, including Mozambique, acute bacterial meningitis (ABM) represents a main cause of childhood mortality. The burden of ABM is seriously underestimated because of the poor performance of culture sampling, the primary method of ABM surveillance in the region. Low quality cerebrospinal fluid (CSF) samples and frequent consumption of antibiotics prior to sample collection lead to a high rate of false-negative results. To our knowledge, this study is the first to determine the frequency of ABM in Mozambique using real-time polymerase chain reaction (qPCR) and to compare results to those of culture sampling.MethodBetween March 2013 and March 2014, CSF samples were collected at 3 regional hospitals from patients under 5 years of age, who met World Health Organization case definition criteria for ABM. Macroscopic examination, cytochemical study, culture, and qPCR were performed on all samples.ResultsA total of 369 CSF samples were collected from children clinically suspected of ABM. qPCR showed a significantly higher detection rate of ABM-causing pathogens when compared to culture (52.3% [193/369] versus 7.3% [27/369], p = 0.000). The frequency of Streptococcus pneumoniae, Haemophilus influenzae, group B Streptococci, and Neisseria meningitidis were 32.8% (121⁄369), 12.2%, (45⁄369), 3.0% (16⁄369) and 4.3% (11⁄369), respectively, significantly higher compared to that obtained on culture (p < 0.001 for each).ConclusionOur findings demonstrate that culture is less effective for the diagnosis of ABM than qPCR. The common use of culture rather than qPCR to identify ABM results in serious underestimation of the burden of the disease, and our findings strongly suggest that qPCR should be incorporated into surveillance activities for ABM. In addition, our data showed that S. pneumoniae represents the most common cause of ABM in children under 5 years of age.
BackgroundS. pneumoniae is the leading cause of acute bacterial meningitis (ABM) in children. Vaccination using the 10-valent conjugate vaccine (PCV-10) was recently introduced into the National Immunization Program in Mozambique, but data on serotype coverage of this vaccine formulation are scarce. In this study, we investigated the serotype distribution and antimicrobial resistance of isolates of S. pneumoniae causing ABM in children < 5 years at the two largest hospitals in Mozambique.MethodsBetween March 2013 and March 2014, a total of 352 cerebrospinal fluid (CSF) samples were collected from eligible children, of which 119 (33.8 %) were positive for S. pneumoniae. Of these, only 50 samples met the criteria for serotyping and were subsequently serotyped using sequential multiplex PCR (SM-PCR), but 15 samples were non-typable.ResultsThe most common serotypes of S. pneumoniae were 1 (18.2 %), 5 (15.2 %), 14 (12.1 %), 9 V (12.1 %), 23 F (9.1 %), 6A (9.1 %), 4 (9.1 %) and 6B (6.1 %). Serotypes 1, 5, 9 V, 6A and 12 were mostly prevalent in Northern Mozambique, while serotypes 23 F, 4, 6B, 3 and 15B were predominant in Southern. Serotype coverage of PCV-10 and PCV-13 vaccine formulations were 81.8 % and 93.9 %, respectively. Serotypes 1, 3, 4, 6B, 14, 23 F were resistant to penicillin and sensitive to ceftriaxone.ConclusionsOur findings shows that changing the current in use PCV-10 vaccine formulation to PCV-13 formulation might increase substantially the protection against invasive strains of S. pneumoniae as the PCV-10 vaccine formulation does not cover the serotypes 3 and 6A, which are prevalent in Mozambique.
IntroductionIn sub Saharan Africa, the epidemiology, including the distribution of serogroups of strains of N. meningitidis is poorly investigated in countries outside “the meningitis belt”. This study was conducted with the aim to determine the distribution of serogroups of strains of N. meningitidis causing meningococcal meningitis in children and adults in Mozambique.MethodsA total of 106 PCR confirmed Neisseria meningitidis Cerebrospinal Fluid (CSF) samples or isolates were obtained from the biobank of acute bacterial meningitis (ABM) surveillance being implemented by the National Institute of Health, at three central hospitals in Mozambique, from January to December 2014. Serogroups of N. meningitidis were determined using conventional PCR, targeting siaD gene for Neisseria meningitidis. Outer Membrane Proteins (OMP) Genotyping was performed by amplifying porA gene in nine samples.ResultsOf the 106 PCR confirmed Neisseria meningitidis samples, the most frequent serotype was A (50.0%, 53/106), followed by W/Y (18.9%, 20/106), C (8.5%, 9/106), X (7.5%, 8/106) and B (0.9%, 1/106). We found non-groupable strains in a total of 15 (14.2%) samples. PorA genotypes from nine strains showed expected patterns with the exception of two serogroup C strains with P1.19,15,36 and P1.19–36,15 and one serogroup X with P1.19,15,36, variants frequently associated to serogroup B.ConclusionOur data shows that the number of cases of meningococcal meningitis routinely reported in central hospitals in Mozambique is significant and the most dominant serogroup is A. In conclusion, although serogroup A has almost been eliminated from the “meningitis belt”, this serogroup remains a major concern in countries outside the belt such as Mozambique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.