Metaseiulus occidentalis is an eyeless phytoseiid predatory mite employed for the biological control of agricultural pests including spider mites. Despite appearances, these predator and prey mites are separated by some 400 Myr of evolution and radically different lifestyles. We present a 152-Mb draft assembly of the M. occidentalis genome: Larger than that of its favored prey, Tetranychus urticae, but considerably smaller than those of many other chelicerates, enabling an extremely contiguous and complete assembly to be built—the best arachnid to date. Aided by transcriptome data, genome annotation cataloged 18,338 protein-coding genes and identified large numbers of Helitron transposable elements. Comparisons with other arthropods revealed a particularly dynamic and turbulent genomic evolutionary history. Its genes exhibit elevated molecular evolution, with strikingly high numbers of intron gains and losses, in stark contrast to the deer tick Ixodes scapularis. Uniquely among examined arthropods, this predatory mite’s Hox genes are completely atomized, dispersed across the genome, and it encodes five copies of the normally single-copy RNA processing Dicer-2 gene. Examining gene families linked to characteristic biological traits of this tiny predator provides initial insights into processes of sex determination, development, immune defense, and how it detects, disables, and digests its prey. As the first reference genome for the Phytoseiidae, and for any species with the rare sex determination system of parahaploidy, the genome of the western orchard predatory mite improves genomic sampling of chelicerates and provides invaluable new resources for functional genomic analyses of this family of agriculturally important mites.
Recent outbreaks of locally transmitted dengue and Zika viruses in Florida have placed more emphasis on integrated vector management plans for Aedes aegypti (L.) and Aedes albopictus Skuse. Adulticiding, primarily with pyrethroids, is often employed for the immediate control of potentially arbovirus-infected mosquitoes during outbreak situations. While pyrethroid resistance is common in Ae. aegypti worldwide and testing is recommended by CDC and WHO, resistance to this class of products has not been widely examined or quantified in Florida. To address this information gap, we performed the first study to quantify both pyrethroid resistance and genetic markers of pyrethroid resistance in Ae. aegypti and Ae. albopictus strains in Florida. Using direct topical application to measure intrinsic toxicity, we examined 21 Ae. aegypti strains from 9 counties and found permethrin resistance (resistance ratio (RR) = 6-61-fold) in all strains when compared to the susceptible ORL1952 control strain. Permethrin resistance in five strains of Ae. albopictus was very low (RR<1.6) even when collected from the same containers producing resistant Ae. aegypti. Characterization of two sodium channel kdr alleles associated with pyrethroid-resistance showed widespread distribution in 62 strains of Ae. aegypti. The 1534 phenylalanine to cysteine (F1534C) single nucleotide polymorphism SNP was fixed or nearly fixed in all strains regardless of RR. We observed much more variation in the 1016 valine to isoleucine (V1016I) allele and observed that an increasing frequency of the homozygous V1016I allele correlates strongly with increased RR (Pearson corr = 0.905). In agreement with previous studies, we observed a very low frequency of three kdr genotypes, IIFF, VIFF, and IIFC. In this study, we provide a statewide examination of pyrethroid resistance, and demonstrate that permethrin resistance and the genetic markers for resistance are widely present in FL Ae. aegypti. Resistance testing should be included in an effective management program.
Puerto Rico (PR) has a long history of vector-borne disease and insecticide-resistant Aedes aegypti (L.). Defining contributing mechanisms behind phenotypic resistance is critical for effective vector control intervention. However, previous studies from PR have each focused on only one mechanism of pyrethroid resistance. This study examines the contribution of P450-mediated enzymatic detoxification and sodium channel target site changes to the overall resistance phenotype of Ae. aegypti collected from San Juan, PR, in 2012. Screening of a panel of toxicants found broad resistance relative to the lab susceptible Orlando (ORL1952) strain. We identified significant resistance to representative Type I, Type II, and nonester pyrethroids, a sodium channel blocker, and a sodium channel blocking inhibitor, all of which interact with the sodium channel. Testing of fipronil, a chloride channel agonist, also showed low but significant levels of resistance. In contrast, the PR and ORL1952 strains were equally susceptible to chlorfenapyr, which has been suggested as an alternative public health insecticide. Molecular characterization of the strain indicated that two common sodium channel mutations were fixed in the population. Topical bioassay with piperonyl butoxide (PBO) indicated cytochrome P450-mediated detoxification accounts for approximately half of the resistance profile. Transcript expression screening of cytochrome P450s and glutathione-S-transferases identified the presence of overexpressed transcripts. This study of Puerto Rican Ae. aegypti with significant contributions from both genetic changes and enzymatic detoxification highlights the necessity of monitoring for resistance but also defining the multiple resistance mechanisms to inform effective mosquito control.
A practical synthetic route for pyrimidine derivatives is presented. This study suggests that these pyrimidine derivatives exhibit some activity against the yellow fever mosquito and, with further structure modification, could be novel lead compounds for the development of insecticides against mosquitoes. © 2016 Society of Chemical Industry.
A field strain of Aedes aegypti (L.) was collected from Puerto Rico in October 2008. Based on LD50 values by topical application, the Puerto Rico strain was 73-fold resistant to permethrin compared with a susceptible Orlando strain. In the presence of piperonyl butoxide, the resistance of Puerto Rico strain of Ae. aegypti was reduced to 15-fold, suggesting that cytochrome P450-mediated detoxification is involved in the resistance of the Puerto Rico strain to permethrin. To determine the cytochrome P450s that might play a role in the resistance to permethrin, the transcriptional levels of 164 cytochrome P450 genes in the Puerto Rico strain were compared with that in the Orlando strain. Of the 164 cytochrome P450s, 33 were significantly (P < 0.05) up-regulated, including cytochrome P450s in families four, six, and nine. Multiple studies have investigated the functionality of family six and nine cytochrome P450s, therefore, we focused on the up-regulated family 4 cytochrome P450s. To determine whether up-regulation of the four cytochrome P450s had any functional role in permethrin resistance, transgenic Drosophila melanogaster Meigen lines overexpressing the four family 4 P450 genes were generated, and their ability to survive exposure to permethrin was evaluated. When exposed to 5 microg per vial permethrin, transgenic D. melanogaster expressing CYP4D24, CYP4H29, CYP4J15v1, and CYP4H33 had a survival rate of 60.0 +/- 6.7, 29.0 +/- 4.4, 64.4 +/- 9.7, and 11.0 +/- 4.4%, respectively. However, none of the control flies survived the permethrin exposure at the same concentration. Similarly, none of the transgenic D. melanogaster expressing CYP4J15v1 or CYP4H33 ?5 survived when they were exposed to permethrin at 10 microg per vial. However, transgenic D. melanogaster expressing CYP4D24 and CYP4H29 had a survival rate of 37.8 +/- 4.4 and 2.2 +/- 2.2%, respectively. Taken together, our results suggest that CYP4D24 might play an important role in cytochrome P450-mediated resistance to permethrin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.