Purpose The paper reports an investigation into the mechanical behaviour of hybrid components produced by combining the capabilities of metal injection moulding (MIM) with the laser-based powder bed fusion (PBF) process to produce small series of hybrid components. The research investigates systematically the mechanical properties and the performance of the MIM/PBF interfaces in such hybrid components. Design/methodology/approach The MIM process is employed to fabricate relatively lower cost preforms in higher quantities, whereas the PBF technology is deployed to build on them sections that can be personalised, customised or functionalised to meet specific technical requirements. Findings The results are discussed, and conclusions are made about the mechanical performance of such hybrid components produced in batches and also about the production efficiency of the investigated hybrid manufacturing (HM) route. The obtained results show that the proposed HM route can produce hybrid MIM/PBF components with consistent mechanical properties and interface performance which comply with the American Society for Testing and Materials (ASTM) standards. Originality/value The manufacturing of hybrid components, especially by combining the capabilities of additive manufacturing processes with cost-effective complementary technologies, is designed to be exploited by industry because they can offer flexibility and cost advantages in producing small series of customisable products. The findings of this research will contribute to further develop the state of the art in regards to the manufacturing and optimisation of hybrid components.
Nickel-based alloys are known as non-weldable materials due to their complex characteristics. Consequently, additive manufacturing of these alloys is particularly challenging. In this paper, the influence of process parameters on the porosity, crack formation and microstructure of additively manufactured CM247LC nickel-based alloy is analysed. The feasibility of the direct laser deposition (DLD) process to manufacture crack-free and low-porosity CM247LC samples is studied. CM247LC samples were built on Inconel 718 that has similar chemical composition, to form hybrid superalloy parts. It was shown that crack-free and high-density CM247LC samples can be obtained through DLD without significant substrate preheating for certain parameter combinations: laser power in the range of 800–1000 W and powder feed rates between 6 and 8 g/min. High-cost and complex preheating was avoided that was commonly reported as necessary to achieve similar densities. For hybrid parts, a large beam diameter and slow scan speeds were employed to achieve optimal conditions as it was evident from the achieved bonding between the Inconel 718 substrate and the deposited layers. It was observed that good bonding between the two materials can be obtained with laser power values between 800 and 1000 W, scanning speed higher than 300 mm/min and powder flow rates of 6–8 g/min.
Hybrid manufacture of components by combining capabilities of replication and additive manufacturing processes offer a flexible and sustainable route for producing cost-effectively small batches of metal parts. At present, there are open issues related to surface integrity and performance of such parts, especially when utilising them in safety critical applications. The research presented in this paper investigates the ductility amplification of hybrid components produced using metal injection moulding to preform and then build on them customisable sections by laser-based powder bed fusion. The properties of such hybrid components are studied and optimised through the use of non-conventional post treatment techniques. In particular, hot isostatic pressing (HIP) is employed to improve mechanical strength and to produce hybrid components that have consistent properties across batches and throughout the samples, minimising microstructural heterogeneities between fabrication processes. Thus, the investigated post-processing method can offer an extended service life of hybrid components, especially when operating under severe conditions. The optimised post treatment was found to increase the hybrid components’ strength compared to as-built ones by 68% and ~11% in yield strength (YS) and ultimate tensile strength (UTS), respectively. Subsequently, leading to a great pitting resistance, thus, making HIP samples suitable for corrosive environments. The advantages of the HIP treatments in comparison to the conventional heat treatment of hybrid components are discussed and also some potential application areas are proposed.
High-temperature alloys pose significant challenges in additive manufacturing. These materials have unique properties, such as high resistance to mechanical and chemical degradation when exposed to high temperatures. Furthermore, when these alloys are used to produce hybrid components with other similar alloys, investigating their surface integrity is critical because any residual stress can lead to early stage cracks and poor fatigue performance. In this research, a hybrid manufacturing approach is employed to produce components from difficult to weld alloys, i.e. CM247LC deposited on IN718 through a laser based direct energy deposition (L-DED) process. The surface integrity, mechanical properties and microstructure of such hybrid components is investigated, especially their welding/joint areas. Crack-free processing regimes were established to deposit CM247LC while mitigating the negative effects onto the microstructure of the Inconel substrate. Especially, the thermal gradients were managed to deliver crack free sections of CM247LC with good interface bonding, strength and fine microstructure. It is important to note that this is achieved without any significant preheating that contrasts with what is reported in other investigations so far. Furthermore, end-use hybrid blisks with deposited CM247LC blades onto Inconel 718 disks (HUB) were manufactured and then machined within a single processing set-up. The results show that the substrate thickness, the machining between the deposited layers and the final machining and heat-treatment play a role in reducing residual stresses. Ultimately, such hybrid manufacturing approach can be considered a new solution for producing such components and also for their subsequent repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.