Tropical geometry, an established field in pure mathematics, is a place where string theory, mirror symmetry, computational algebra, auction theory, and so forth meet and influence one another. In this paper, we report on our discovery of a tropical model with self-organized criticality (SOC) behavior. Our model is continuous, in contrast to all known models of SOC, and is a certain scaling limit of the sandpile model, the first and archetypical model of SOC. We describe how our model is related to pattern formation and proportional growth phenomena and discuss the dichotomy between continuous and discrete models in several contexts. Our aim in this context is to present an idealized tropical toy model (cf. Turing reaction-diffusion model), requiring further investigation.
The goal of this study was to investigate if gene expression measured from RNA sequencing contains enough signal to separate healthy and afflicted individuals in the context of phenotype prediction. We observed that standard machine learning methods alone performed somewhat poorly on the disease phenotype prediction task; therefore we devised an approach augmenting machine learning with topological data analysis.We describe a framework for predicting phenotype values by utilizing gene expression data transformed into sample-specific topological signatures by employing feature subsampling and persistent homology. The topological data analysis approach developed in this work yielded improved results on Parkinson's disease phenotype prediction when measured against standard machine learning methods.This study confirms that gene expression can be a useful indicator of the presence or absence of a condition, and the subtle signal contained in this high dimensional data reveals itself when considering the intricate topological connections between expressed genes.
Background
A metagenome is a collection of genomes, usually in a micro-environment, and sequencing a metagenomic sample
en masse
is a powerful means for investigating the community of the constituent microorganisms. One of the challenges is in distinguishing between similar organisms due to rampant multiple possible assignments of sequencing reads, resulting in false positive identifications. We map the problem to a topological data analysis (TDA) framework that extracts information from the geometric structure of data. Here the structure is defined by multi-way relationships between the sequencing reads using a reference database.
Results
Based primarily on the patterns of co-mapping of the reads to multiple organisms in the reference database, we use two models: one a subcomplex of a Barycentric subdivision complex and the other a Čech complex. The Barycentric subcomplex allows a natural mapping of the reads along with their coverage of organisms while the Čech complex takes simply the number of reads into account to map the problem to homology computation. Using simulated genome mixtures we show not just enrichment of signal but also microbe identification with strain-level resolution.
Conclusions
In particular, in the most refractory of cases where alternative algorithms that exploit unique reads (i.e., mapped to unique organisms) fail, we show that the TDA approach continues to show consistent performance. The Čech model that uses less information is equally effective, suggesting that even partial information when augmented with the appropriate structure is quite powerful.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.