A study of the pretreatment stage and subsequent leaching of a mixed copper ore with different chloride solutions containing iron was carried out. The first stage considered pretreatment tests to decide the best conditions. Two levels of each factor were analyzed, 20 and 50 kg/t of NaCl, 17 and 25 kg/t of H2SO4, 0 and 25 kg/t of Fe2(SO4)3·9.2H2O, 0 and 25 kg/t of Fe2SO4·7H2O, and a curing time of 15 and 30 days. The results showed a significant effect of NaCl and curing time on the extraction, and less effect was found with the variation of acid and iron salts. The second stage included column leaching using a solution with 0.5 g/L of Cu+2, 80 g/L of Cl−, 10 g/L of H2SO4, and variable concentrations of ferric and ferrous ions (0 and 2 g/L). The best copper extraction of 80.2% was found considering a pretreatment of 30 days, 25 kg/t of H2SO4, 50 kg/t of NaCl, and a leaching solution concentration described previously with 2 g/L of Fe+2. The results showed the leaching of all copper oxide species and 20% of the copper sulfide species. In addition, there was a reduction in the acid consumption as the resting time increases. Furthermore, to evaluate a possible decrease in time and acid in pretreatment and chloride in leaching, tests including 10 and 25 kg/t of H2SO4 and 1, 15, and 30 days of curing and a diminution of the NaCl concentration to 20 g/L (content from seawater) were executed. The results showed a significant effect on curing time below 15 days. Furthermore, the slight influence of the decrease of acid on copper extraction gives cost reduction opportunities. The diminution of chloride concentration (80 to 20 g/L) in leaching solution decreases the extraction from 79% to 66.5%. Finally, the Mellado leaching kinetic model was successfully implemented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.