Colored tensor models have been recently shown to admit a large N expansion, whose leading order encodes a sum over a class of colored triangulations of the D-sphere. The present paper investigates in details this leading order. We show that the relevant triangulations proliferate like a species of colored trees. The leading order is therefore summable and exhibits a critical behavior, independent of the dimension. A continuum limit is reached by tuning the coupling constant to its critical value while inserting an infinite number of pairs of D-simplices glued together in a specific way. We argue that the dominant triangulations are branched polymers.Comment: 20 page
Boundaries in gauge theories are a delicate issue. Arbitrary boundary choices enter the calculation of charges via Noether's second theorem, obstructing the assignment of unambiguous physical charges to local gauge symmetries. Replacing the arbitrary boundary choice with new degrees of freedom suggests itself. But, concretely, such boundary degrees of freedom are spurious-i.e. they are not part of the original field content of the theory-and have to disappear upon gluing. How should we fit them into what we know about field-theory? We resolve these issues in a unified and geometric manner, by introducing a connection 1-form, , in the field-space of Yang-Mills theory. Using this geometric tool, a modified version of symplectic geometry-here called 'horizontal'-is possible. Independently of boundary conditions, this formalism bestows to each region a physical notion of charge: the horizontal Noether charge. The horizontal gauge charges always vanish, while global charges still arise for reducible configurations characterized by global symmetries. The field-content itself is used as a reference frame to distinguish 'gauge' and 'physical'; no new degrees of freedom, such as group-valued edge modes, are required. Different choices of reference fields give different 's, which are cousins of gauge-fixings like the Higgs-unitary and Coulomb gauges. But the formalism extends well beyond gauge-fixings, for instance by avoiding the Gribov problem. For one choice of , would-be Goldstone modes arising from the condensation of matter degrees of freedom play precisely the role of the known group-valued edge modes, but here they arise as preferred coordinates in field space, rather than new fields. For another choice, in the Abelian case, recovers the Dirac dressing of the electron.
We study the expectation value of a nonplanar Wilson graph operator in SL(2,C) Chern-Simons theory on S 3 . In particular we analyze its asymptotic behaviour in the double-scaling limit in which both the representation labels and the Chern-Simons coupling are taken to be large, but with fixed ratio. When the Wilson graph operator has a specific form, motivated by loop quantum gravity, the critical point equations obtained in this double-scaling limit describe a very specific class of flat connection on the graph complement manifold. We find that flat connections in this class are in correspondence with the geometries of constant curvature 4-simplices. The result is fully non-perturbative from the perspective of the reconstructed geometry. We also show that the asymptotic behavior of the amplitude contains at the leading order an oscillatory part proportional to the Regge action for the single 4-simplex in the presence of a cosmological constant. In particular, the cosmological term contains the full-fledged curved volume of the 4-simplex. Interestingly, the volume term stems from the asymptotics of the Chern-Simons action. This can be understood as arising from the relation between Chern-Simons theory on the boundary of a region, and a theory defined by an F 2 action in the bulk. Another peculiarity of our approach is that the sign of the curvature of the reconstructed geometry, and hence of the cosmological constant in the Regge action, is not fixed a priori, but rather emerges semiclassically and dynamically from the solution of the equations of motion. In other words, this work suggests a relation between 4-dimensional loop quantum gravity with a cosmological constant and SL(2,C) Chern-Simons theory in 3-dimensions with knotted graph defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.