Boundaries in gauge theories are a delicate issue. Arbitrary boundary choices enter the calculation of charges via Noether's second theorem, obstructing the assignment of unambiguous physical charges to local gauge symmetries. Replacing the arbitrary boundary choice with new degrees of freedom suggests itself. But, concretely, such boundary degrees of freedom are spurious-i.e. they are not part of the original field content of the theory-and have to disappear upon gluing. How should we fit them into what we know about field-theory? We resolve these issues in a unified and geometric manner, by introducing a connection 1-form, , in the field-space of Yang-Mills theory. Using this geometric tool, a modified version of symplectic geometry-here called 'horizontal'-is possible. Independently of boundary conditions, this formalism bestows to each region a physical notion of charge: the horizontal Noether charge. The horizontal gauge charges always vanish, while global charges still arise for reducible configurations characterized by global symmetries. The field-content itself is used as a reference frame to distinguish 'gauge' and 'physical'; no new degrees of freedom, such as group-valued edge modes, are required. Different choices of reference fields give different 's, which are cousins of gauge-fixings like the Higgs-unitary and Coulomb gauges. But the formalism extends well beyond gauge-fixings, for instance by avoiding the Gribov problem. For one choice of , would-be Goldstone modes arising from the condensation of matter degrees of freedom play precisely the role of the known group-valued edge modes, but here they arise as preferred coordinates in field space, rather than new fields. For another choice, in the Abelian case, recovers the Dirac dressing of the electron.
A canonical analysis for general relativity is performed on a null surface without fixing the diffeomorphism gauge, and the canonical pairs of configuration and momentum variables are derived. Next to the well-known spin-2 pair, also spin-1 and spin-0 pairs are identified. The boundary action for a null boundary segment of spacetime is obtained, including terms on codimension two corners. * fhopfmueller@perimeterinstitute.ca † lfreidel@perimeterinstitute.ca arXiv:1611.03096v2 [gr-qc]
We give a full analysis of the conservation along null surfaces of generalized energy and super-momenta, for gravitational systems enclosed by a finite boundary. In particular we interpret the conservation equations in a canonical manner, revealing a notion of symplectic potential and a boundary current intrinsic to null surfaces. This generalizes similar analyses done at asymptotic infinity or on horizons.
We present a systematic procedure to renormalize the symplectic potential of the electromagnetic field at null infinity in Minkowski space. We work in D ≥ 6 spacetime dimensions as a toy model of General Relativity in D ≥ 4 dimensions. Total variation counterterms as well as corner counterterms are both subtracted from the symplectic potential to make it finite. These counterterms affect respectively the action functional and the Hamiltonian symmetry generators. The counterterms are local and universal. We analyze the asymptotic equations of motion and identify the free data associated with the renormalized canonical structure along a null characteristic. This allows the construction of the asymptotic renormalized charges whose Ward identity gives the QED soft theorem, supporting the physical viability of the renormalization procedure. We touch upon how to extend our analysis to the presence of logarithmic anomalies, and upon how our procedure compares to holographic renormalization. * lfreidel@perimeterinstitute.ca † fhopfmueller@perimeterinstitute.ca ‡ ariello@perimeterinstitute.ca
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.