The COVID-19 (Corona Virus Disease 2019) pandemic is still spreading until 2022, so in responding to this, PT Adira Finance provides an opportunity to suspend credit installment payments to nasakabah. In order not to cause installments and defaults (breaking promises) it is necessary to have a decision support system to determine the creditworthiness of these customers. The purpose of this study is to build a decision support system to determine the feasibility of solicitation to customers using the naïve bayes method. The model used to build this system is the System Development Life Cycle (SDLC) with stages of analysis, design, testing, and implementation. The sample or training data used in this study was 20 customers. Meanwhile, the technique used to determine the feasibility of customer suspension uses naïve bayes by looking at the prior and conditional probability values of each criteria. Our findings result in a customer eligibility decision support system with the naïve bayes method is appropriate and accurate. So that with this system, it can be used as a consideration to make decisions by the manager of PT Adira Finance to determine whether or not customers are eligible to receive a credit suspension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.