An overview of homoclinic and heteroclinic bifurcation theory for autonomous vector fields is given. Specifically, homoclinic and heteroclinic bifurcations of codimension one and two in generic, equivariant, reversible, and conservative systems are reviewed, and results pertaining to the existence of multi-round homoclinic and periodic orbits and of complicated dynamics such as suspended horseshoes and attractors are stated. Bifurcations of homoclinic orbits from equilibria in local bifurcations are also considered. The main analytic and geometric techniques such as Lin's method, Shil'nikov variables and homoclinic center manifolds for analyzing these bifurcations are discussed. Finally, a few related topics, such as topological moduli, numerical algorithms, variational methods, and extensions to singularly perturbed and infinitedimensional systems, are reviewed briefly.
Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Deng has demonstrated a mechanism through which a perturbation of a vector field having an inclination-flip homoclinic orbit would have a Smale horseshoe. In this article we prove that if the eigenvalues of the saddle to which the homoclinic orbit is asymptotic satisfy the condition 2λu > min{−λs, λuu} then there are arbitrarily small perturbations of the vector field which possess a Smale horseshoe. Moreover we analyze a sequence of bifurcations leading to the annihilation of the horseshoe. This sequence contains, in particular, the points of existence of n-homoclinic orbits with arbitrary n.
Random diffeomorphisms with bounded absolutely continuous noise are known to possess a finite number of stationary measures. We discuss the dependence of stationary measures on an auxiliary parameter, thus describing bifurcations of families of random diffeomorphisms. A bifurcation theory is developed under mild regularity assumptions on the diffeomorphisms and the noise distribution (e.g. smooth diffeomorphisms with uniformly distributed additive noise are included). We distinguish bifurcations where the density function of a stationary measure varies discontinuously or where the support of a stationary measure varies discontinuously. We establish that generic random diffeomorphisms are stable. The densities of stable stationary measures are shown to be smooth and to depend smoothly on an auxiliary parameter, except at bifurcation values. The bifurcation theory explains the occurrence of transients and intermittency as the main bifurcation phenomena in random diffeomorphisms. Quantitative descriptions by means of average escape times from sets as functions of the parameter are provided. Further quantitative properties are described through the speed of decay of correlations as a function of the parameter. Random differentiable maps which are not necessarily injective are studied in one dimension; we show that stable one-dimensional random maps occur open and dense and that in one-parameter families bifurcations are typically isolated. We classify codimension-one bifurcations for one-dimensional random maps; we distinguish three possible kinds, the random saddle node, the random homoclinic and the random boundary bifurcation. The theory is illustrated on families of random circle diffeomorphisms and random unimodal maps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.