The Thermal Infrared Visual Object Tracking challenge 2015, VOT-TIR2015, aims at comparing short-term singleobject visual trackers that work on thermal infrared (TIR) sequences and do not apply pre-learned models of object appearance. VOT-TIR2015 is the first benchmark on shortterm tracking in TIR sequences. Results of 24 trackers are presented. For each participating tracker, a short description is provided in the appendix. The VOT-TIR2015 challenge is based on the VOT2013 challenge, but introduces the following novelties: (i) the newly collected LTIR (Linköping TIR) dataset is used, (ii) the VOT2013 attributes are adapted to TIR data, (iii) the evaluation is performed using insights gained during VOT2013 and VOT2014 and is similar to VOT2015.
This paper addresses the problems of tracking targets which undergo rapid and significant appearance changes. Our starting point is a successful, state-of-the-art tracker based on an adaptive coupled-layer visual model [10]. In this paper, we identify four important cases when the original tracker often fails: significant scale changes, environment clutter, and failures due to occlusion and rapid disordered movement. We suggest four new enhancements to solve these problems: we adapt the scale of the patches in addition to adapting the bounding box; marginal patch distributions are used to solve patch drifting in environment clutter; a memory is added and used to assist recovery from occlusion; situations where the tracker may lose the target are automatically detected, and a particle filter is substituted for the Kalman filter to help recover the target. We have evaluated the enhanced tracker on a publicly available dataset of 16 challenging video sequences, using a test toolkit [17]. We demonstrate the advantages of the enhanced tracker over the original tracker, as well as several other state-of-the art trackers from the literature.
We address the problem of statistical learning of shape models which are invariant to translation, rotation and scale in compositional hierarchies when data spaces of measurements and shape spaces are not topological manifolds. In practice, this problem is observed while modeling shapes having multiple disconnected components, e.g. partially occluded shapes in cluttered scenes. We resolve the aforementioned problem by first reformulating the relationship between data and shape spaces considering the interaction between Receptive Fields (RFs) and Shape Manifolds (SMs) in a compositional hierarchical shape vocabulary. Then, we suggest a method to model the topological structure of the SMs for statistical learning of the geometric transformations of the shapes that are defined by group actions on the SMs. For this purpose, we design a disjoint union topology using an indexing mechanism for the formation of shape models on SMs in the vocabulary, recursively. We represent the topological relationship between shape components using graphs, which are aggregated to construct a hierarchical graph structure for the shape vocabulary. To this end, we introduce a framework to implement the indexing mechanisms for the employment of the vocabulary for structural shape classification. The proposed approach is used to construct invariant shape representations. Results on benchmark shape classification outperform state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.