Silphium perfoliatum L. (cup plant, silphie) and S. integrifolium Michx. (rosinweed, silflower) are in the same subfamily and tribe as sunflower (Helianthus annuus L.). Silphium perfoliatum has been grown in many countries as a forage or bioenergy crop with forage quality approaching that of alfalfa (Medicago sativa L.) and biomass yield close to maize (Zea mays L.) in some environments. Silphium integrifolium has large seeds with taste and oil quality similar to traditional oilseed sunflower. Silphium species are all long‐lived, diploid perennials. Crops from this genus could improve the yield stability, soil, and biodiversity of agricultural landscapes because, in their wild state, they are deep rooted and support a wide diversity of pollinators. In contrast with premodern domestication, de novo domestication should be intentional and scientific. We have the luxury and obligation at this moment in history to expand the domestication ideotype from food and energy production to include (i) crop‐driven ecosystem services important for sustainability, (ii) genetic diversity to enable breeding progress for centuries, (iii) natural adaptations and microbiome associations conferring resource use efficiency and stress tolerance, and (iv) improving domestication theory itself by monitoring genetic and ecophysiological changes from predomestication baselines. Achieving these goals rapidly will require the use of next‐generation sequencing for marker development and an international, interdisciplinary team committed to collaboration and strategic planning.
Silflower (Silphium integrifolium Michx.) is in the early stages of domestication as a perennial version of oilseed sunflower, its close relative. Grain crops with deep perennial root systems will provide farmers with new alternatives for managing soil moisture and limiting or remediating soil erosion, fertilizer leaching, and loss of soil biota. Several cycles of selection for increased seed production potential following initial germplasm evaluation in 2002 have provided opportunities to document the botany and ecology of this relatively obscure species, to compare agronomic practices for improving its propagation and management, and to evaluate the differences between semi-domesticated and wild accessions that have accrued over this time through intentional and unintentional genetic processes. Key findings include: domestication has increased aboveground biomass at seedling and adult stages; seed yield has increased more, achieving modest improvement in harvest index. Harvest index decreases with nitrogen fertilization. Silflower acquires nitrogen and water from greater depth than typical crops. In agricultural silflower stands within its native range, we found that Puccinia silphii (rust) and Eucosma giganteana (moth) populations build up to unacceptable levels, but we also found genetic variation for traits contributing to resistance or tolerance. Breeding or management for reduced height and vegetative plasticity should be top priorities for future silflower research outside its native range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.