Silflower (Silphium integrifolium Michx.) is in the early stages of domestication as a perennial version of oilseed sunflower, its close relative. Grain crops with deep perennial root systems will provide farmers with new alternatives for managing soil moisture and limiting or remediating soil erosion, fertilizer leaching, and loss of soil biota. Several cycles of selection for increased seed production potential following initial germplasm evaluation in 2002 have provided opportunities to document the botany and ecology of this relatively obscure species, to compare agronomic practices for improving its propagation and management, and to evaluate the differences between semi-domesticated and wild accessions that have accrued over this time through intentional and unintentional genetic processes. Key findings include: domestication has increased aboveground biomass at seedling and adult stages; seed yield has increased more, achieving modest improvement in harvest index. Harvest index decreases with nitrogen fertilization. Silflower acquires nitrogen and water from greater depth than typical crops. In agricultural silflower stands within its native range, we found that Puccinia silphii (rust) and Eucosma giganteana (moth) populations build up to unacceptable levels, but we also found genetic variation for traits contributing to resistance or tolerance. Breeding or management for reduced height and vegetative plasticity should be top priorities for future silflower research outside its native range.
A network of 21 experiments was established across nine countries on four continents and spanning both hemispheres, to evaluate the relative performance of early generation perennial cereal material derived from wheat, rye, and barley and to inform future breeding strategies. The experimental lines were grown in replicated single rows, and first year production and phenology characteristics as well as yield and persistence for up to three years were monitored. The study showed that the existing experimental material is all relatively short-lived (≤3 years), with environments that are milder in summer and winter generally conferring greater longevity. No pedigree was superior across this diverse network of sites although better performing lines at the higher latitude sites were generally derived from Thinopyrum intermedium. By contrast, at lower latitudes the superior lines were generally derived from Th. ponticum and Th. elongatum parentage. The study observed a poor relationship between year 1 performance and productivity in later years, highlighting the need for perennial cereal material with greater longevity to underpin future experimental evaluation, and the importance for breeding programs to emphasize post-year 1 performance in their selections. Hybrid lines derived from the tetraploid durum wheat generally showed greater longevity than derivatives of hexaploid wheat, highlighting potential for greater use of Triticum turgidum in perennial wheat breeding. We advocate a model in future breeding initiatives that develops perennial cereal genotypes for specific target environments rather than a generic product for one global market. These products may include a diversity of cultivars derived from locally adapted annual and perennial parents. In this scenario the breeding program may have access to only a limited range of adapted perennial grass parents. In other situations, such as at very high latitude environments, perennial crops derived from barley or rye may have a better chance of success than those derived from wheat. In either case, development and selection of the perennial parent for adaptation to local environments would seem fundamental to success.
The majority of domesticated plant species are herbaceous annuals and woody perennials, yet many herbaceous perennial species hold potential for future agricultural systems. In addition to multiyear harvests, herbaceous perennials provide many ecosystem services, including erosion control as a result of their large and persistent root systems. However, the multiyear lifespan of perennial species has been a barrier to rapid domestication as breeding cycles require phenotyping over multiple growing seasons. Using phenomic selection, high-dimensional secondary traits measured on seedlings could be used to develop relationship matrices among individuals which are then used to predict field traits. Additionally, these models can serve as the selection criteria to identify individuals to advance to the next (pre)breeding generation, thus shortening the breeding cycle. This project substitutes costly genomics data with high-dimensional phenomics data asking: Can elite individuals of perennial species be predicted by phenomic relatedness models based on high-dimensional traits recorded on seedlings? To date, we have imaged 2280 seedlings from each of the following three perennial crop candidate species: intermediate wheatgrass (Thinopyrum intermedium), sainfoin (Onobrychis viciifolia), and silphium (Silphium integrifolium) on the Bellwether Foundation Phenotyping Facility housed at the Danforth Center. The images were processed using PlantCV to generate high-dimensional color and near-infrared profiles for each plant on each image day.Additionally, profiles were generated with handheld spectrometers. This work re-imagines innovations in plant traits, kinship matrices, genomic selection, phenotyping centers, and ultimately domestication, in order to expedite the development of an emerging generation of climate resilient, ecologically sustainable crops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.