Natural populations persist in complex environments, where biotic stressors, such as pathogen and insect communities, fluctuate temporally and spatially. These shifting biotic pressures generate heterogeneous selective forces that can maintain standing natural variation within a species. To directly test if genes containing causal variation for the Arabidopsis thaliana defensive compounds, glucosinolates (GSL) control field fitness and are therefore subject to natural selection, we conducted a multi-year field trial using lines that vary in only specific causal genes. Interestingly, we found that variation in these naturally polymorphic GSL genes affected fitness in each of our environments but the pattern fluctuated such that highly fit genotypes in one trial displayed lower fitness in another and that no GSL genotype or genotypes consistently out-performed the others. This was true both across locations and within the same location across years. These results indicate that environmental heterogeneity may contribute to the maintenance of GSL variation observed within Arabidopsis thaliana.DOI:
http://dx.doi.org/10.7554/eLife.05604.001
Daily rhythms of gene expression provide a benefit to most organisms by ensuring that biological processes are activated at the optimal time of day. Although temporal patterns of expression control plant traits of agricultural importance, how natural genetic variation modifies these patterns during the day and how precisely these patterns influence phenotypes is poorly understood. The circadian clock regulates the timing of gene expression, and natural variation in circadian rhythms has been described, but circadian rhythms are measured in artificial continuous conditions that do not reflect the complexity of biologically relevant day/ night cycles. By studying transcriptional rhythms of the eveningexpressed gene GIGANTEA (GI) at high temporal resolution and during day/night cycles, we show that natural variation in the timing of GI expression occurs mostly under long days in 77 Arabidopsis accessions. This variation is explained by natural alleles that alter light sensitivity of GI, specifically in the evening, and that act at least partly independent of circadian rhythms. Natural alleles induce precise changes in the temporal waveform of GI expression, and these changes have detectable effects on PHYTOCHROME INTERACTING FACTOR 4 expression and growth. Our findings provide a paradigm for how natural alleles act within day/night cycles to precisely modify temporal gene expression waveforms and cause phenotypic diversity. Such alleles could confer an advantage by adjusting the activity of temporally regulated processes without severely disrupting the circadian system. diurnal | circadian | rhythms | Arabidopsis | GIGANTEA
Circadian clocks have evolved independently in all three domains of life, suggesting that internal mechanisms of time-keeping are adaptive in contemporary populations. However, the performance consequences of either discrete or quantitative clock variation have rarely been tested in field settings. Clock sensitivity of diverse segregating lines to the environment remains uncharacterized as do the statistical genetic parameters that determine evolutionary potential. In field studies with Arabidopsis thaliana, we found that major perturbations to circadian cycle length (referred to as clock period) via mutation reduce both survival and fecundity. Subtler adjustments via genomic introgression of naturally occurring alleles indicated that clock periods slightly >24 hr were adaptive, consistent with prior models describing how well the timing of biological processes is adjusted within a diurnal cycle (referred to as phase). In segregating recombinant inbred lines (RILs), circadian phase varied up to 2 hr across months of the growing season, and both period and phase expressed significant genetic variances. Performance metrics including developmental rate, size and fruit set were described by principal components (PC) analyses and circadian parameters correlated with the first PC, such that period lengths slightly >24 hr were associated with improved performance in multiple RIL sets. These experiments translate functional analyses of clock behaviour performed in controlled settings to natural ones, demonstrating that quantitative variation in circadian phase is highly responsive to seasonally variable abiotic factors. The results expand upon prior studies in controlled settings, showing that discrete and quantitative variation in clock phenotypes correlates with performance in nature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.